目 录

关于修订全日制硕士专业学位研究生培养方案的指导性意见	1
全日制研究生课程编号、课程分级及研究生获取课程学分计算说明	4
电子科技大学博士、硕士学位授权点一览表	9
电子科技大学专业学位授权点一览表	12
金融硕士 全日制专业学位研究生培养方案	13
翻译硕士 全日制专业学位研究生培养方案	17
新闻与传播硕士 全日制专业学位研究生培养方案	22
机械工程领域 全日制工程硕士研究生培养方案	27
光学工程领域 全日制工程硕士研究生培养方案	33
仪器仪表工程领域 全日制工程硕士研究生培养方案	39
材料工程领域 全日制工程硕士研究生培养方案	45
电子与通信工程领域 全日制工程硕士研究生培养方案	50
集成电路工程领域 全日制工程硕士研究生培养方案	63
控制工程领域 全日制工程硕士研究生培养方案	68
计算机技术领域 全日制工程硕士研究生培养方案	75
软件工程领域 全日制工程硕士研究生培养方案	80
生物医学工程领域 全日制工程硕士研究生培养方案	86
工业工程领域 全日制工程硕士研究生培养方案	92
物流工程领域 全日制工程硕士研究生培养方案	98
药学硕士 全日制专业学位研究生培养方案	104
工商管理硕士(MBA) 全日制专业学位研究生培养方案	109

关于修订全日制硕士专业学位研究生培养方案的指导性意见

为贯彻落实教育部、人力资源社会保障部《关于深入推进专业学位研究生培养模式改革的意见》(教研〔2013〕03号)和教育部《关于做好全日制硕士专业学位研究生培养工作的若干意见》(教研〔2009〕1号)相关文件精神,满足建设创新型国家和人力资源强国的需要,加大我校研究生教育改革与创新力度,进一步提高研究生的培养质量,现对我校全日制硕士专业学位培养方案修订工作提出以下指导性意见。

一、指导思想

全日制硕士专业学位研究生培养方案应明确培养目标、课程体系及各培养环节的主要内容,遵循专业学位研究生教育规律,创新培养模式。培养方案应密切结合行(企)业需求,以提升职业能力为导向,以培养实践能力为重点,以产学结合为途径,科学制定培养方案。

培养方案的修订工作应按照"分类培养"的基本思路,根据全国各专业学位研究生教育指导委员会的指导性意见,注重实践环节,充分体现我校全日制硕士专业学位研究生培养方案的完整性和专业学位教育的特色。

二、基本原则

- (一)全日制硕士专业学位研究生培养方案修订应遵循"分类培养"的原则,培养方案的修订要有别于学术学位硕士研究生。
- (二)培养方案应在总结本专业学位类别(或领域)研究生教育的培养经验和研究成果基础之上, 结合经济社会发展特点和我校的自身优势,根据全国各专业学位研究生教育指导委员会的指导性意 见(或基本要求)开展修订工作。
- (三)专业实践是研究生培养的重要环节,充分的、高质量的专业实践是专业学位教育质量的重要保证。培养方案的修订工作应有相关行(企)业专家参与。通过引入企业课程、扩大案例教学及实践教学的比例、加强实践基地建设等手段为研究生提供充分的实践资源和平台。
 - (四)积极推进培养各环节与相关职业和行(企)业资格认证的有机衔接。
- (五)我校硕士专业学位研究生培养方案一般应按照各专业学位类别进行修订。对于工程硕士, 应按各领域进行修订,其中,电子与通信工程可按领域方向进行修订。

三、主要内容及相关要求

培养方案的主要内容有:专业学位类别(或领域方向)简介,培养目标、研究方向(培养方向、领域方向)、培养方式和学习年限、学分要求与课程学习要求、课程设置、学位论文等。

(一)专业学位类别(或领域方向)简介

结合全国各专业学位教育指导委员会的要求和我校对本学位类别(或领域方向)研究生培养的实际情况进行撰写。

(二) 培养目标

专业学位研究生的培养目标是掌握某一特定职业领域相关理论知识、具有较强解决实际问题的

能力、能够承担专业技术或管理工作、具有良好职业素养的高层次应用型专门人才。

校内各研究生培养单位根据各专业学位研究生教育指导委员会的指导意见,结合我校特色和各培养单位自身特点,确定与本专业学位类别(或领域)相适应的培养目标。

(三)研究方向(培养方向、领域方向)

研究方向(培养方向、领域方向)的设置应与相关的职业、行(企)业相对应,原则上不超过6个。

(四) 培养方式和学习年限

全日制硕士专业学位研究生采用课程学习、实践教学和学位论文相结合的培养方式。通过课程 学习、实践教学和论文研究工作,掌握某一特定职业领域相关理论知识,培养解决实际问题的能力。 全日制硕士专业学位研究生的培养采用校内外双导师共同指导的方式。

全日制工程硕士研究生学制为3年,其它专业学位类别学制为2-3年。提前完成硕士学业者,可申请提前半年毕业;若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过4年。

鼓励文管类学科专业探索 2 年制硕士研究生培养,但必须充分论证,保证培养质量。

(五) 学分要求与课程学习要求

- 1、各专业学位硕士研究生培养学分要求应参考全国有关专业学位研究生教育指导委员会制定的 指导性培养方案进行修订。
 - 2、课程学时学分设置要求

全校性共选的英语、政治类课程学时学分比保持现有比例不变。理工类专业学位类别(或领域)课程统一按照 20 学时 1 学分计算,文管类专业学位类别(或领域)课程统一按照 16 学时 1 学分计算。凡是按照 16 学时 1 学分开设的课程,每门课程原则上应不低于 24 学时。

3、工程硕士专业学位研究生学分要求如下:

理工类总学分要求不低于 36 学分,其中课程总学分不低于 25 学分,实践教学环节不低于 6 学分,必修环节不低于 5 学分,课程学分中,学位课要求不低于 16 个学分。

(六)课程设置

1、课程体系优化要求

各类别培养方案的课程设置应结合培养目标,优化课程体系框架,优选教学内容,加强案例教学、模拟训练等教学方法的运用。

在设置课程时应协调好先修课与后修课之间的关系,合理安排各类课程的开课学期,课程安排时间一般为 1-1.5 年。

2、课程类型设置要求

课程设置分为四个模块:学位课、非学位选修课、实践环节、必修环节。

- (1) 学位课包括公共基础课、基础课和专业基础课三类。公共基础课按照教育部有关规定分别设置政治理论课和外国语等课程。基础课和专业基础课应注重各行(企)业相关专业领域的基础理论,可依托相关学科的学术学位研究生课程,充分利用研究生教育教学资源,注意增强理论与实际的联系。
 - (2) 非学位选修课包括专业选修课和其他选修课两类。非学位选修课应与学术学位研究生课程

有所不同,应以实际应用为导向,反映行(企)业研究开发及生产中的实际问题或相关专业领域的前沿知识。鼓励引入行(企)业专家开设应用性课程。根据培养需要,可以开设部分跨专业学位类别(或领域)课程。

- (3) 实践环节可以通过基地专业实践、实践教学课程、认证考试、项目设计等多种方式进行设置。
- (4)必修环节应包含教学实践、社会实践、素质教育公选课、学术活动、论文开题报告及文献阅读综述等内容。其中,学术活动内容应注重与行(企)业的实际应用相关,鼓励研究生到校外各行(企)业完成学术活动。

3、课程考核要求

为保证研究生培养质量,学位课必须考试,非学位课应注重考核形式的多样化、有效性和可操作性。各类课程应注意转变课程考核方式,注重培养过程考核和能力考核,着重考查研究生运用所学基本知识和技能解决实际问题的能力和水平。

(七) 学位论文

- 1、学位论文选题应来源于应用课题或现实问题,要有明确的职业背景和行(企)业应用价值, 学位论文应能反映研究生综合运用知识技能解决实际问题的能力和水平。
- 2、学位论文可以将研究报告、规划设计、产品开发、案例分析、管理方案、发明专利、文学艺术作品等作为主要内容,以论文形式表现,学位论文工作时间应不少于1年。
- 3、研究生应在校内外双导师指导下独立完成学位论文,以校内导师指导为主,校外导师参与各个培养环节的实践指导工作。
- 4、学位论文的撰写应按照《研究生学位论文(研究报告)撰写格式规范》执行;学位论文的答辩申请、评阅、答辩与学位授予应按照《电子科技大学研究生学位授予实施细则》的规定执行。

四、其他

本指导性意见适用于指导 2015 年培养方案修订工作,修订形成的培养方案自 2015 级研究生开始执行,执行周期为四年。在执行周期内,可根据研究生培养的实际需要进行适当调整。

全日制研究生课程编号、课程分级及研究生获取课程学分计算说明

一、课程编号规则

研究生课程编号共八位数,其具体含义分别为:

例如:

某课程编号"01025003"表示: 开课单位为通信学院(01)、在该学院的"通信与信息系统"学科(02)中的课程级别号为5、是该级别下的第3门课程(003);

某课程编号"07425001"表示:该课程为开课单位为自动化学院(07)、在该学院的"仪器仪表工程"硕士专业领域(42)中的课程级别号为5、是该级别下的第1门课程(001)(主要面向"实践教学环节"开设)。

二、课程编号各位数具体内容

①——第一、二位,代表开课学院代码;

特别地,"20"代表全校统一编号的基础课/专业基础课/专业课;"00"代表校素质教育课程。

②——第三、四位,代表各学院包含的学科或专业领域对应序号;

特别地,若为面向全日制硕士专业学位所开设的专门课程,则对应专业领域代表的两位数,首位统一为"4",次位是该领域的编号。

开课学院对应代码和学院包含的学科对应序号详见下表:

学院 代码	学院名称	学科、专业领域名称及课程编号中对应的序号
001	通信与信息工程学院	01-信息与通信工程;02-通信与信息系统;03-密码学; 04-光学工程; 41-电子与通信工程;88-该学院其他学科
002	电子工程学院	01-信息与通信工程;02-电子科学与技术;03-电磁场与微波技术;04-信号与信息处理;05-电路与系统;06-信息获取与探测技术;41-电子与通信工程;88-该学院其他学科
003	微电子与固体电子学院	01-电子科学与技术; 02-材料科学与工程; 03-微电子学与固体电子学; 04-电子信息材料与元器件; 05-化学工程与技术; 41-电子与通信工程; 42-材料工程; 43-集成电路工程; 88-该学院其他学科

学院 代码	学院名称	学科、专业领域名称及课程编号中对应的序号
004	物理电子学院	01-电子科学与技术;02-物理电子学;03-无线电物理;04-光学;05-等离子体物理;06-凝聚态物理;07-理论物理;41-电子与通信工程;88-该学院其他学科
005	光电信息学院	01-光学工程; 02-材料科学与工程; 03-物理电子学; 04-电路与系统; 05-化学工程与技术; 06-电磁场与微波技术; 07-电子信息材料与元器件; 08-信号与信息处理; 41-光学工程; 42-电子与通信工程; 88-该学院其他学科
006	计算机科学与工程学院	01-计算机科学与技术; 02-计算机系统结构; 03-计算机软件与理论; 04-计算机应用技术; 06-网络空间安全; 41-计算机技术; 88-该学院其他学科
007	自动化工程学院	01-仪器科学与技术; 02-控制理论与控制工程; 03-检测技术与自动化装置; 04-模式识别与智能系统; 05-地图制图学与地理信息工程; 06-生物医学工程; 07-计算机应用技术; 41-控制工程; 42-仪器仪表工程; 88-该学院其他学科
008	机械电子工程学院	01-机械制造及其自动化;02-机械电子工程;03-机械设计及理论;04-精密仪器及机械;05-电力电子与电力传动;06-机械工程;41-机械工程;88-该学院其他学科
009	生命科学与技术学院	01-生物医学工程;02-生物物理学;03-生物化学与分子生物学;04-应用心理学;05-神经生物学; 41-生物医学工程;88-该学院其他学科
010	数学科学学院	01-数学;02-应用数学;03-计算数学;04-运筹学与控制 论;05-基础数学;06-概率论与数理统计;07-统计学; 88-该学院其他学科
011	经济与管理学院	01-数量经济学; 02-管理科学与工程; 03-企业管理; 04-新兴技术管理; 05-技术经济及管理; 06-金融学; 07-金融工程; 08-区域经济学; 41-工业工程; 42-项目管理; 43-物流工程; 44-工程管理; 45-工商管理; 46-金融; 88-该学院其他学科
012	政治与公共管理学院	01-国际政治;02-行政管理;03-新闻传播学;04-宪法学与行政法学;05-应用心理学;41-新闻与传播;42-公共管理;88-该学院其他学科

学院 代码	学院名称	学科、专业领域名称及课程编号中对应的序号
013	外国语学院	01-外国语言学与应用语言学; 02-英语语言文学; 41-翻译; 88-该学院其他学科
016	马克思主义教育学院	01-马克思主义基本原理、思想政治教育;02-思想政治教育; 03-政治学; 88-该学院其他学科
017	能源科学与工程学院	01-电气工程; 02-材料科学与工程; 03-模式识别与智能系统; 88-该学院其他学科
018	资源与环境学院	01-测绘科学与技术; 41-控制工程;42-电子与通信工程;88-该学院其他学科
019	航空航天学院	01-导航、制导与控制; 02-系统工程; 41-电子与通信工程; 88-该学院其他学科
021	医学院	01-生物医学工程; 41-药学;88-该学院其他学科
022	信息与软件工程学院	01-软件工程; 41-软件工程;88-该学院其他学科
024	电子科学技术研究院	01-材料科学与工程; 02-通信与信息系统; 03-电磁场与微波技术; 04-信号与信息处理; 05-电路与系统; 06-微电子与固体电子学; 07-电子信息材料与元器件; 08-计算机应用技术; 09-信息安全; 41-电子与通信工程; 42-计算机技术; 88-该学院其他学科
026	通信抗干扰技术国家级 重点实验室	01-信息与通信工程;02-通信与信息系统;03-密码学; 41-电子与通信工程;88-该学院其他学科
		00-相关学院开出的公共基础课、基础课或素质教育类校公选课

注:上表各序号代表该学院主要招生的学科,其他招生很少的学科归入到序号"88"中;某门课程如适合多学科,则按小序号优先编排。

③——第五位,代表课程分级。

④——第六、七、八位,代表该级号下课程顺序号。

三、课程分级规定

研究生课程共分五级,分别用400、500、600、700、800级表示。各级别符号的含义如下:

400 级——交叉学科初级基础理论课程。主要为非本学科背景的研究生开设的、本学科主要理论或技术基础课,课程难度相当于本学科已开设的本科高级课程。(主要为跨学科考生补修本科核心课程)

500 级——本学科基本理论、技术基础类课程。主要为本学科硕士研究生层次的专业理论或技术基础课程,本学科公共的研究生层次的综合实验技术类、素质教育类课程。

600级——包括两部分:

本学科硕士研究生技术专业类课程。主要为本学科硕士研究生层次的专业性较强的课程,或内容难度较大、比较深入或涉及前沿的课程,包括课程作业、课程设计、实验设计等内容。

本学科博士研究生基本理论、技术基础类课程。

700 级——学科前沿新理论与新方法理论课程。主要为博士生的专业技术课程,或针对硕士研究生开设的本学科前沿高新技术的理论基础或专业基础类课程。

800 级——高级讲座与研讨课程。主要为本学科博士生、硕士生开设的前沿讲座类、研讨类和报告类等高层次课程。

四、研究生获取学分规定

研究生修读不同级别的课程,根据各级别的学分要求计算实得学分。具体规定如下:

硕士研究生修读400级课程不计学分,修读500级以上(含500级)课程按课程学分计算。

直博研究生修读 500 级以上(含 500 级)的课程,按课程学分计算;专业课允许修读 600 级以上(含 600 级)的课程,但 700 级的课程不少于 8 个学分。

博士研究生修读 400 级、500 级课程不计学分,修读 600 级以上(含 600 级)课程按课程学分计算,但博士研究生专业选修课限选 700、800 级课程,不能用 500、600 级课程学分取代。

电子科技大学博士、硕士学位授权点一览表

序 号	学科 门类	一级学科名称	一级学 科代码	二级学科名称	二级学 科代码	国家重点	省重点	博士点
1				区域经济学	020202			
2	经济学	应用经济学◎	0202	金融学	020204			
3				数量经济学 #	020209		√	
4		法学	0301	宪法学与行政法学	030103			
5		政治学◎	0302	国际政治	030206			
6	法学			马克思主义基本原理	030501		√	√
7		马克思主义理论◎*	0305	思想政治教育	030505		√	√
8	教育学	心理学	0402	应用心理学	040203			
9				英语语言文学	050201			
10	文学	外国语言文学◎	0502	外国语言学及应用语言学	050211			
11		新闻传播学◎	0503	传播学	050302			
12				基础数学	070101		√	√
13		数学●◆*	0701	计算数学	070102		√	√
14				概率论与数理统计	070103		√	√
15				应用数学	070104		√	√
16				运筹学与控制论	070105		√	√
17		物理学●◆*		理论物理	070201		√	√
18	理学			粒子物理与原子核物理	070202		√	√
19				原子物理与分子物理	070203		√	√
20			0702	等离子体物理	070204		√	√
21		1次年子●▼**	0702	凝聚态物理	070205		√	√
22				声学	070206		√	\checkmark
23				光学	070207		√	√
24				无线电物理	070208		√	√
25				神经生物学	071006			
26	理学	生物学◎	0710	生物化学与分子生物学	071010			
27	理字			生物物理学	071011			
28		统计学◎	0714	(可授理学、经济学学位)				
29				机械制造及其自动化	080201		√	√
30	一业	扣 每 了 和 ▲ ·	0002	机械电子工程	080202		√	√
31	工学	机械工程●◆*	0802	机械设计及理论	080203		√	√
32				车辆工程	080204			√

序 号	学科 门类	一级学科名称	一级学 科代码	二级学科名称	二级学 科代码	国家 重点	省重点	博士点
33		光学工程●◆★*	0803				√	√
34		仪器科学与技术●◆*	0804	精密仪器及机械	080401		√	√
35		仅 奋科子与仅小●▼*	0804	测试计量技术及仪器	080402		√	√
36				材料物理与化学	080501		√	√
37		材料科学与工程●◆*	0805	材料学	080502		√	√
38				材料加工工程	080503		√	√
39		电气工程 ◎	0808	电力电子与电力传动	080804			
40		1 - 1 - 1		物理电子学	080901	√		√
41				电路与系统	080902	√		√
42		电子科学与技术☆●◆	0809	微电子学与固体电子学	080903	√		√
43				电磁场与微波技术	080904	√		√
44				电子信息材料与元器件	0809Z1			√
45		信息与通信工程☆●◆		通信与信息系统	081001	√		√
46			0810	信号与信息处理	081002	√		√
47	工学			信息获取与探测技术	0810Z1			√
48	工 字			遥感信息科学与技术	0810Z2			√
49			0811	控制理论与控制工程	081101		√	√
50		控制科学与工程●◆*		检测技术与自动化装置	081102		√	√
51				系统工程	081103			√
52				模式识别与智能系统	081104		√	√
53				导航、制导与控制	081105		√	√
54				计算机系统结构	081201		√	√
55		1. 熔扣 4. 丛上 + +	0012	计算机软件与理论	081202		√	√
56		计算机科学与技术●◆*	0812	计算机应用技术 ★	081203		√	√
57				信息安全	0812Z1			√
58		测绘科学与技术 ◎	0816	地图制图学与地理信息工程	081603			
59		化学工程与技术◎	0817	应用化学#	081704		√	
60		生物医学工程●◆*	0831	(可授工学、医学学位)			√	√
61		软件工程●	0835					√
62		网络空间安全●	0839					√
63	军事学	军队指挥学	1105	密码学	110505			
64		德珊 利尚上工和▲▲	1201				√	√
65		管理科学与工程●◆*	1201	金融工程	1201Z1			√
66				会计学	120201			√
67	管理学	工商答理●▲*	1202	企业管理	120202		√	√
68		工商管理●◆*	1202	旅游管理	120203			√
69				技术经济及管理	120204		√	√
70		公共管理◎	1204	行政管理#	120401		√	

说明:

- 1. 带☆为一级学科国家重点学科,带★为国家重点学科培育学科,带*为一级学科省级重点学科,带#为二级学科省级重点学科,带●的为一级学科博士学位授权点,带◎的为一级学科硕士学位授权点,带◆的为博士后流动站。
- 2. 在8个学科门类、29个一级学科领域内拥有:15个一级学科博士学位授权点,52个博士点,26个一级学科硕士学位授权点,70个硕士点;并有工程博士(电子与信息工程博士领域)专业学位授予权以及金融、翻译、新闻与传播、药学、公共管理(MPA)、工商管理(MBA)和工程硕士(含13个工程领域)等7种硕士专业学位授予权。其中:一级学科国家重点学科2个(含二级学科国家重点学科6个)、国家重点(培育)学科2个,一级学科省重点学科12个、二级学科省重点学科3个。
 - 3. 博士后流动站 13 个。

电子科技大学专业学位授权点一览表

序号	专业学位类别	类别代码	工程领域	工程领域代码
1	工程博士	085271	电子与信息	
2	金融	0251		
3	翻译	0551		
4	新闻与传播	0552		
5	药学	1055		
6	工商管理 (MBA)	1251		
7	公共管理 (MPA)	1252		
8			机械工程	085201
9			光学工程	085202
10			仪器仪表工程	085203
11			材料工程	085204
12			电子与通信工程	085208
13			集成电路工程	085209
14	工程硕士	0852	控制工程	085210
15			计算机技术	085211
16			软件工程	085212
17			生物医学工程	085230
18			工业工程	085236
19			项目管理	085239
20			物流工程	085240

金融硕士 全日制专业学位研究生培养方案

(专业代码:025100)

金融是现代经济的核心,金融已然成为大国博弈的重要平台。随着以市场为主体的资源配置方式的改革,金融行业将由相对单一的融资功能进入到融资与投资功能并重、投资功能日益重要的时代,基于财富管理的金融机构越来越市场化,金融资产越来越证券化,以互联网金融为代表的金融与信息技术的融合越来越紧密,对主要依托金融工程技术开发的金融衍生品或理财产品的需求将越来越大,相应地对金融人才的知识结构要求越来越注重其应用性。金融硕士("Master of Finance",简称 MF)专业学位的设置正是顺应了金融行业的这种变革和发展趋势。

一、培养目标

密切结合我校的理工科背景和学科特色,瞄准市场需求,采用"产学研结合、双导师培养"的模式,培养具备良好的职业道德和 IT 素养,具有国际化视野和扎实的经济金融理论基础,能够从事金融产品与交易策略设计、金融风险管理等实际应用工作的数理型、复合型金融专业人才,包括金融产品设计师、金融策略分析师与交易员、风险(财富)管理师和金融机构管理者等。

二、专业方向

01 证券期货投资 02 互联网金融

03 财富与资产管理 04 风险管理

三、培养方式和学习年限

全日制硕士专业学位研究生采用课程学习、实践教学和学位论文相结合的培养方式。通过课程学习、实践教学、专业实习和论文研究工作,掌握金融领域相关理论知识,培养学生分析问题和解决实际问题的能力。硕士研究生的培养采用校内外双导师共同指导的方式,聘请有实践经验的专家、业界人士与监管部门人员开设讲座或承担部分课程。

全日制硕士研究生学制为二年。若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过三年。

四、课程学习与学分基本要求

总学分要求不低于 40 学分,其中课程总学分不低于 29 个学分(学位课不低于 17 学分,非学位课不低于 12 学分),必修环节不低于 11 学分(包括专业实习 4 学分)。公共基础课必修,多选一课程至少修 1 门。

对于跨学科专业或同等学力录取的硕士生,要求自行补修相应专业本科核心课程 至少 2 门,但不计学分。

五、课程设置

全日制硕士专业学位课程划分为学位课、非学位课、必修环节三部分。

全融硕士	全日制专业学位硕士研究生课程设置
亚州玉州、土	土口则又业子区则工则九工场性以且

Ž	と 別	课程编号	课程名称	学时	学分	开课 学期	考核 方式	备注
	公共	16005004	中国特色社会主义理论与实践研究	36	2	1	考试	
	基础课	13005014	硕士研究生学位英语	90	3	1/2	考试	
学位		11076028	金融经济学	48	3	1	考试	
课	专业	11046016	投资学	48	3	1	考试	
	基础课	11035021	公司金融	48	3	1	考试	
		11046008	金融衍生工具	48	3	2	考试	
		11046001	金融法规	32	2	1	考试	
		11076023	证券期货投资分析	32	2	2	考查	
		11046003	互联网金融	32	2	1	考查	
非	专业	11046004	商业银行风险管理	32	2	2	考试	
·· 学	选修课	11046005	金融市场与机构	32	2	1	考试	
位		11076022	固定收益证券	32	2	2	考查	
课		11015024	高级计量经济学	40	2.5	2		
		11026034	数据挖掘与信息管理	48	3	2	考试	
	其他	16005011	自然辨证法概论	18	1	2	考查	二选
	选修课	16005012	马克思主义与社会科学方法论	18	1	2	考查	
	践教 *环节	11446001	金融交易策略设计与模拟	64	4	2		
.iv.	修环节	专业实习	(详见后面第"六"点说明)		4		考查	
火	 	其它环节	【一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个		3			
	科专业		经济学基础					
	注补修本 逐心课程		会计学原理		不计学	:分		

六、实践教学环节和必修环节

- (一)实践教学环节:主要指研究生运用所学理论知识在教师的指导下能设计相关的金融交易策略,并通过实验室进行模拟仿真交易,要求提交实验报告。完成者获得4学分。
 - (二)必修环节包含两个部分,要求研究生分别完成以下内容:
- 1、专业实习:主要指研究生运用所学知识到证券公司、期货公司、基金公司、资产管理公司、商业银行以及其他金融机构的相关岗位进行实习。时间不少于6个月,要求提交实习报告,同时实习单位提供书面证明,报所在学院备案。完成者获得4学分。

- 2、其他环节,包含三个部分:
- 1) 学术活动及业界讲座: 为了拓宽研究生的知识面,规定研究生在校期间必须参加十次以上校内外学术活动和业界讲座与论坛等,有举办单位的公章为依据,报所在学院备案,完成后才能申请论文答辩。完成者获得1学分。
- 2)人文教育与学术交流(课程编号: XX66XXXX):硕士研究生在校期间必须参加每年6月举办的"人文教育与学术交流月"活动。参加讲座两次以上,有举办学术单位的公章为依据,提交学习报告,导师审核签字,计入学术活动;完成人文教育与学术交流课程至少1门,完成者获得相应必修环节学分。
- 3) 论文开题报告及文献阅读综述:指研究生在学位论文开题之前,阅读本学科国内外文献或行业专题研究报告 20 篇以上,外文文献或研究报告 10 篇以上,写出 4000 字左右的综述报告,附上不少于 1000 字的相应英文概述;综述报告应提出值得研究和解决的科学或现实问题,并在此基础上完成相应的开题报告。完成者获得 1 学分。

七、学位论文

(一)硕士学位论文的基本要求

1. 选题要求

学位论文的选题应与金融实践紧密结合。应有现实针对性、应用性;论文内容强调金融理论在 实践中的应用,能综合反映学生运用知识分析问题和解决问题的能力。

2. 形式要求

学位论文可结合案例分析、产品设计与金融实践问题解决方案、调研报告等内容撰写。学位论 文须独立完成、要求写作规范,字数不低于 1.5 万字。

3. 水平要求

金融硕士专业学位论文的评阅主要考核"选题、理论与方法、数据与素材、现实价值、创新性、写作能力"等六方面。

(二)硕士学位论文工作

硕士生应在导师指导下确定选题和开展学位论文工作,校外导师参与论文环节的指导工作。

- 1. 开题报告
- (1) 开题报告时间。硕士生在确定选题,阅读文献和专业实习的基础上,应在入学的第三学期初(9月初)完成开题报告。
- (2) 开题报告方式。开题报告应以报告会的形式,在教(科)研室或以上范围公开举行; 开题报告会须有本学科及相近学科 3 位副教授或金融行业相当专业技术职称以上的专家组成考评组,考评组以校内专家为主,至少应有一位来自相关行(企)业或工程部门的专家。考评组对研究生开题作出考评意见。
- (3) 开题报告内容。依据《开题报告表》的要求,做开题报告。在开题报告会后,及时完成《开题报告表》,交学院研究生科保存,以备检查。
- (4) 若开题报告没能通过,在导师的指导下3个月后才能申请重新开题。2次开题报告不过者,应终止硕士生的学业。
 - (5) 因正当原因改变选题,须按上述要求重做开题报告。
 - (6) 论文开题通过九个月后方能申请学位论文答辩。
 - 2. 论文工作

硕士生应在校内外双导师指导下按计划按时完成学位论文工作。学位论文研究工作可采用应用

基础研究、案例分析、调研报告、产品设计等多种形式。

论文工作的时间应不少于1年,论文工作期间应每周一次向导师汇报研究进展;研究生到校外单位做学位论文,要经校内导师、学院批准,并保证每月一次向导师汇报研究进展,按时完成相应工作。

3. 学位论文的撰写

硕士生在导师指导下,按照《研究生学位论文(研究报告)撰写格式规范》的要求,独立完成学位论文,导师应对硕士生学位论文严格审查,把好质量关。

(三)学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行,其中评阅、答辩考评组以校内专家为主,但至少应有一位相关行业具有高级职称(或相当水平)的专家。

翻译硕士 全日制专业学位研究生培养方案

(专业代码:055100)

翻译硕士专业学位(Master of Translation and Interpreting—MTI)是经国务院学位委员会批准实施的全国专业学位教育。根据国务院学位委员会,教育部学位管理与研究生教育司,全国翻译硕士专业学位(MTI)教育指导委员会 2011 年 8 月下发的《翻译硕士专业学位指导性培养方案》(修订版)的精神,参照该培养方案的要求,结合我校办学优势和特色,特制定"电子科技大学全日制翻译硕士专业学位研究生培养方案。

一、培养目标

电子科技大学翻译专业硕士旨在通过系统的教育与训练,培养德、智、体全面发展,能适应全球经济一体化及提高国家国际竞争力的需要,适应国家经济、文化、社会建设需要的电子信息领域的高层次、应用型、专业性口笔译人才。

二、研究方向(培养方向、领域方向)

- 1. 笔译
- 2. 口译

三、培养方式和学习年限

充分利用学校语言翻译实践、语料库翻译实训平台和校内外翻译实训基地,采用"校企合作+院际合作"的"企业导师+校内院外导师+院内导师"的"三师"导师组和基于翻译实践项目的培养模式,突出语言与行业之间的高度融合,注重翻译实践能力的提升。笔译课程将翻译技能和项目任务相结合,加强笔译实战能力的训练。口译课程运用同声传译实验室和多媒体教室等电子信息技术设备授课,使学生能实景观摩、仿拟,提高口译技能。

教学采用课堂讲授与翻译实训相结合的方式。教学活动采用必/选修课程学习、口笔译实践实训、电子信息类语料库实训、CATTI二级口笔译月考等,提高学生的实际翻译能力。

全日制攻读硕士专业学位者学习年限一般为三年;提前完成硕士学业者,可申请提前半年毕业; 若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不得超过四年。

四、课程学习与学分基本要求

总学分要求不低于 49 个学分,课程学分不少于 38 学分(16 学时=1 学分),其中,学位课程不少于 20 学分,非学位选修课程不少于 18 学分,口笔译方向课程可以互选;实践教学环节不低于 6 学分,必修环节不低于 5 学分。多选一课程至少选修 1 门。

允许在导师指导下、在相同学科门类或专业领域之间选修 1~2 门学位课作为本专业的学位课。 针对实践教学环节中开出的实验课程,可根据需要、进行跨学院跨专业选修。课程学习可采用本硕 互补一体化方式,根据学生具体情况,在导师指导下选修相关本科课程,弥补自身知识结构的不足, 但不计入学分。

对于跨学科专业录取的硕士生,要求补修相应专业本科核心课程至少 2 门,通过导师考核后,才能选修专业课。

研究生导师负责指导研究生制定个人培养计划和选课。导师指导研究生自学与研究课题有关的知识,并列入个人培养计划,但不计学分。校外导师参与课程学习、实践教学环节的指导工作。

五、课程设置

全日制硕士专业学位课程划分为学位课、非学位课、实践教学环节、必修环节四部分。

翻译硕士硕士 全日制专业学位研究生课程设置

2	 类 别	课程编号	详帧 工帧 工一主口前 专业学位 切牙 	学时	学分	开课	考核	备注
						学期	方式	
	公共	16005004	中国特色社会主义理论与实践研究	36	2	1	考试	
	基础课	13415001	中国语言文化	48	3	1	考试	
学	基础课	13415009	翻译概论	64	4	1	考试	
位		13416004	文学翻译	64	4	2	考试	
课	专业	13416015	非文学翻译	64	4	2	考试	
	基础课	13416003	电子信息类科技笔译	64	4	2	考试	
		13416006	电子信息类科技口译	64	4	2	考试	
		13415010	科技文献高级阅读	48	3	1	考查	
		13416009	翻译类论文写作	32	2	3	考查	
	± .II.	13416013	视译	32	2	1	考查	
非	选修课	13416008	计算机辅助翻译	32	2	2	考查	
学		13416016	翻译工作坊	64	4	3	考查	
位		13416017	交替口译	32	2	3	考查	
选		13416018	同声传译	32	2	3	考查	
修		16005011	自然辨证法概论	18	1	2	考查	一)
课	++ /. .	16005012	马克思主义与社会科学方法论	18	1	2	考查	二选一
	其他 选修课		实验课程					
			前沿知识讲座					
			跨专业领域或跨学科相关课程					
_			CATTI 二级口笔译月考		2	1/2		详见第
	实践教 学环节		电子信息类语料库实训		2	3	考查	"六"点
-	는 N/ 11		笔译实习或口译实习		2	4/5		说明
必	修环节		详见第"六"点说明					
			科学技术史					
m-#			信息论导论		不计	学分		
		2领域考生 ない課題	计算机通讯网	1				
	补修本科	陔心 珠程	英汉语言对比					
			跨文化交际					

六、实践教学环节和必修环节

(一)实践教学环节:这是专业学位研究生培养过程中重要的特色培养环节,实践教学环节不低于6学分:

笔译方向的学生至少有 15 万字以上的笔译实践。由学生提交原文、译文、项目来源证明、实习单位证明,实践总结报告等材料,经导师审核合格签字后方可获得 2 个学分。

口译方向的学生不少于 400 小时的口译实践。学生必须提交口译活动主办单位的证明、部分口译实践的录音或录像资料、实践总结报告等材料,经导师审核合格签字后方可获得 2 个学分。

参加笔译实训平台提供电子信息类专题实训,分期按时完成任务,获得2个学分。

参加 CATTI 二级口笔译月考实战,获得 2 个学分。

- (二)必修环节包含五个部分,要求研究生分别完成以下内容:
- 1. 素质教育公选课(课程编号: 00005XXX): 重点加强研究生综合素质教育,研究生可选修 1门,考核通过后获 1 个学分。
 - 2. 教学实践、创新创业与社会实践可以二选一,完成后获得相应学分。
- (1) 教学实践(课程编号: 00006001, 学时 40): 主要是面向本科生的教学辅导工作,如在导师或任课教师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等,工作量不少于 40 学时。由导师或任课教师给出评语,学院给予书面证明,报学生所在学院备案。完成者获得1学分。
- (2) 创新创业与社会实践(课程编号: 00006002): 创新创业与社会实践学分认定范围主要包含五大类,即: 竞赛获奖、知识产权、科技成果转化、自主创业、社会实践等。研究生完成五类中任意一种类别,均可获得相应学分。具体界定如下:

竞赛获奖:指研究生参加由政府教育行政主管部门、专业学术团体、专业教学指导委员会组织 主办的国际、国家级学术科技类、创新创业类、文化艺术体育类等竞赛并获得省部级及以上奖项可 获得1个学分。

知识产权:包括发明专利、实用新型专利等,如外观设计专利、计算机软件著作权、集成电路 布图专有权等。完成后可申请1个学分。

科技成果转化:指研究生的专利以实施许可、技术转让或技术入股方式进行技术转移等。完成 后可申请1个学分。

自主创业:指研究生在校学习期间自主创建公司(应与所学专业相关),完成公司登记注册并顺利运营。完成后可申请1个学分。

社会实践:主要指研究生运用所学知识到地方政府、科研院所、企事业单位等开展基层挂职及调研、公益支教、扶贫服务、技术合作等实践项目。完成后根据要求提交总结或报告,并附相关证明材料,报所在学院备案。社会实践项目不得与联合培养基地专业实践项目重复。完成后可获得1个学分。

- 3. 学术活动(课程编号: 00006003, 1 个学分): 为了拓宽研究生的知识面,规定硕士生在校期间必须参加十次以上校内外学术活动,有举办学术单位的公章为依据,报学生所在学院备案,完成者获得1学分。
- 4. 人文教育与学术交流(课程编号: XX66XXXX): 硕士研究生在校期间必须参加每年 6 月举办的"人文教育与学术交流月"活动。参加讲座两次以上,有举办学术单位的公章为依据,提交学习报告,导师审核签字,计入学术活动;完成人文教育与学术交流课程至少 1 门,完成者获得相应必修环节学分。
 - 5. 论文开题报告及文献阅读综述(课程编号: 00006009): 指研究生在学位论文开题之前,必

须阅读本学科前沿国内外文献 20 篇以上,其中外文文献 10 篇以上,写出 4000 字左右的文献综述报告,附上不少于 1000 字的英文摘要;综述报告应提出值得研究和解决的学术或技术问题,并在此基础上完成相应的开题报告,完成者获得 1 学分。

七、学位论文

(一) 硕士学位论文的基本要求

1. 选题要求

学位论文的选题应来源于各类翻译实践的应用课题或现实课题,强调研究生在掌握翻译基本理 论和综合应用汉外两种语言能力的基础上,能够解决具体的翻译实践问题,表明作者综合运用翻译 理论、方法和技术解决具体的双语转换的能力。具体可以在以下几个方面选取:

- (1) 翻译活动较多的领域,如政治外交、商务、旅游、文学、文献、法律等;
- (2) 电子信息领域相关翻译活动及现象;
- (3) 语言服务相关行业,包含翻译、技术、管理等相关方面;
- (4) 翻译市场分析:
- (5) 翻译和国家战略关系;
- (6) 翻译项目管理;
- (7) 翻译技术应用等方面。

2. 形式要求

翻译硕士专业学位的论文形式可以多样化,既可以是研究类学位论文,如翻译理论研究、翻译 史研究、译家译作研究、文化翻译研究等,也可以是翻译项目报告或翻译试验报告。

项目报告:笔译方向研究生在导师的指导下选择中外文本进行翻译,中文字数不少于 10000 字,外文不少于 15000 词,并根据译文就翻译过程中的问题写出不少于 5000 词的研究报告;口译方向研究生在导师指导下进行口译实践并根据口译实践项目,独立撰写一份不少于 5000 词的口译实践报告,提交口译活动主办单位证明、部分口译实践录音或录像资料。 报告类型包括:口笔译实践操作类案例分析报告、翻译岗位实习报告、翻译市场调查报告、翻译项目管理类案例分析报告、翻译术语库类案例分析报告、翻译项目语料库类案例分析报告、项目质量审校类案例分析报告、陪同口译类案例分析报告、交替传译类案例分析报告、同声传译类案例分析报告等。

实验报告: 学生在导师的指导下就口译或笔译的某个环节展开实验,并就实验结果进行分析,写出不少于 15000 词的实验报告。

研究论文: 学生在导师的指导下撰写翻译研究论文, 字数不少于 15000 词。

3. 水平要求

翻译硕士专业学位的学位论文的水平要求体现在以下方面:

- (1) 学位论文工作有一定的难度和深度,论文成果具有一定的代表性和实用性;
- (2) 学位论文工作应在导师指导下独立完成,论文工作量饱满;
- (3) 学位论文中的文献综述应对选题所涉及的翻译问题或研究课题的国内外状况有清晰的描述与分析;
- (4) 学位论文的正文应综合应用基础理论、科学方法、专业知识和技术手段对所解决的翻译 理论问题或翻译实际问题进行分析研究,并能在某些方面提出独立见解。
- (5) 学位论文撰写要求概念清晰,逻辑严谨,结构合理,层次分明,文字通畅、图表清晰、概念清楚、数据可靠、分析深入、案例典型。
 - (二)硕士学位论文工作

硕士生应在导师指导下确定选题和开展学位论文工作,校外导师参与论文环节的指导工作。

1. 开题报告

- (1) 开题报告时间。硕士生在确定选题,大量阅读文献的基础上,应在入学的第三学期末之前, 最迟应在第四学期末之前完成开题报告。
- (2) 开题报告方式。开题报告应以报告会的形式,在教(科)研室或以上范围公开举行; 开题报告会须有本学科及相近学科 3 位副教授或相当专业技术职称以上的专家组成考评组,考评组以校内专家为主,至少应有一位来自相关行(企)业或工程部门的专家。考评组对研究生开题作出考评意见。
- (3) 开题报告内容。依据《开题报告表》的要求,做开题报告。在开题报告会后,及时完成《开题报告表》,在学院审核后,由研究生科保存,以备检查。
- (4) 若开题报告没能通过,在导师的指导下 3 个月后才能申请重新开题。两次开题报告不过者,应终止硕士生的学业。
 - (5) 因正当原因改变选题,须按上述要求重做开题报告。
 - (6) 论文开题通过1年后方能申请学位论文答辩。

2. 论文工作

硕士生应在校内外双导师指导下按计划按时完成学位论文工作。

学位论文采用匿名评审,论文评阅人中至少有一位是校外专家。答辩委员会成员中必须有一位 具有丰富的口译或笔译实践经验且具有高级专业技术职称的专家。

论文工作的时间应不少于1年,论文工作期间应每周一次向导师汇报研究进展;研究生到校外单位做学位论文,要经校内导师、学院批准,并保证每月一次向导师汇报研究进展,按时完成相应工作。

3. 学位论文的撰写

硕士生在导师指导下,按照《研究生学位论文(研究报告)撰写格式规范》的要求,独立完成学位论文,导师应对硕士生学位论文严格审查,把好质量关。

(三)学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行,其中评阅、答辩考评组以校内专家为主,但至少应有一位相关行业具有高级职称(或相当水平)的专家。

新闻与传播硕士 全日制专业学位研究生培养方案

(专业代码:055300)

新闻传播学是一门着重研究人类社会的传播活动及其规律的科学,它吸收了众多学科的研究成果,具有极强的综合性与应用性。本学科以新闻传播学学科为基础,以哲学、政治学、管理学、社会学等学科为支撑,对网络以及新媒体传播、政府传播、新闻传播、文化传播等进行较为系统、深入的研究。既研究新闻传播学的基本原理,又关注各种具体的新闻传播实践,更注重研究全球化、信息化条件下新闻传播学的发展新趋势。本学科以理论为基础,突出学生新闻传播实践能力的培养。

承担该学科硕士培养任务的我校政治与公共管理学院,在新媒体与网络传播、组织形象塑造与 媒体、新闻传播与社会发展等方面具有较强的研究和教学实力,科研成果丰硕。

一、培养目标

本学科培养德、智、体全面发展,专业理论知识扎实;能独立从事新闻传播实践及学术研究; 能熟练地掌握一门外国语和计算机技能;能胜任大众传媒机构、宣传机构、高等院校、科研机构和 网络传播领域的理论研究、教学和实践工作的专业人才。具体培养目标是:

- 1. 能熟练掌握和运用新闻传播学的相关理论与常用研究方法;
- 2. 具备较强的对问题的发现能力、研究能力和解决能力,能独立完成课题研究;
- 3. 具有较强的信息技术和信息传播能力。

二、培养方向

1. 传播理论与方法

3. 新闻业务

2. 网络传播与技术

4. 数字传播与文化产业

三、培养方式和学习年限

全日制硕士专业学位研究生以课程教学为主,兼有案例分析、专题讲座、模拟演练、现场实习等多种形式的教学方式。通过研究我国新闻传播业和国际同行业的实际问题,学习新闻传播基本理论及实际应用,培养学生新闻与传播实务能力,增强职业竞争力。硕士研究生的培养采用校内外双导师共同指导的方式。

全日制硕士专业学位研究生学制为三年。提前完成硕士学业者,可申请提前半年毕业;若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过四年。

四、学分要求与课程学习要求

总学分不低于 34 学分。其中基础课 14 学分(详见"五、课程设置"中备注"必修"课程); 选修课 16 学分,由学位课中部分专业基础课、非学位课选修课和必修环节构成,其中必修环节学 分不低于 5 学分;专业实习 4 学分,由教学实践环节构成,应届本科生实习实践时间不少于 6 个月, 多选一课程至少选修 1 门。

允许在导师指导下、在相近学科门类或专业领域之间选修 1~2 门学位课作为本专业的学位课。 针对实践教学环节中开出的实验课程,可根据需要、进行跨学院跨专业选修。

学位课可以代替非学位课,但非学位课不能代替学位课。跨学科专业录取的硕士研究生应至少

补修本专业本科核心课程2门,通过导师考核后,才能选修专业课。

研究生导师负责指导研究生制定个人培养计划和选课。导师指导研究生自学与研究课题有关的知识,并列入个人培养计划,但不计学分。校外导师参与课程学习、实践教学环节的指导工作。

五、课程设置

全日制硕士专业学位研究生课程划分为学位课、非学位课、实践教学环节、必修环节四部分。

新闻与传播硕士 全日制专业学位研究生课程设置

Ż	类 别	课程编号	课程名称	学时	学分	开课 学期	考核 方式	备注
	公共	16005004	中国特色社会主义理论与实践研究	36	2	1	考试	必修
学位	基础课	13005014	硕士研究生学位英语	90	3	1/2	考试	必修
	基础课	12415010	新闻传播理论	40	2.5	1	考试	必修
		12026011	社会科学研究的量化方法	32	2	1	考试	必修
课	±.II.	12415009	中外新闻传播学史	32	2	1	考试	必修
	专业 基础课	12415005	传媒产业发展研究	32	2	2	考试	必修
	坐伽体	12035007	网络新媒体研究	40	2.5	2	考试	
		12025009	公共管理学	40	2.5	1	考试	
		12415004	传播法规与媒介伦理	32	2	2	考试	
	专业	12415008	传播学理论与应用	40	2.5	1	考试	
非	选修课	12415006	新闻业务研究	40	2.5	1	考试	
学		12416006	媒介融合理论与实践	32	2	1	考试	
位选		12416007	危机传播管理	32	2	2	考试	
修		16005011	自然辨证法概论	18	1	2	考查	二选一
课	++· /.l.	16005012	马克思主义与社会科学方法论	18	1	2	考查	选一
	其他 选修课		实验课程					
	起廖怀		前沿知识讲座					
			跨专业领域或跨学科相关课程					
			基地专业实践					
_	` □\. +/.	12416012	平面媒体实践与研究	32	2	2		详见第
	实践教 学环节	12416013	影视节目策划与制作	32	2	2		"六"点
-	는 % l, la	12416014	新媒体实践与研究	32	2	2		说明
		其他要求	工程/项目设计、知名企业认证考试等					
必	必修环节		详见第"六"点说明					
	跨学科专业领域考生 补修本科核心课程				不计	学分		

六、实践教学环节和必修环节

- (一)实践教学环节:这是专业学位研究生培养过程中重要的特色培养环节,实践教学可采用集中实践与分段实践相结合的方式进行。可通过实践教学课程获得6个学分。
 - (二)必修环节包含五个部分,要求研究生分别完成以下内容:
- 1. 素质教育公选课(课程编号: 00005XXX): 重点加强研究生综合素质教育,研究生可选修 1门,考核通过后获 1 个学分。
 - 2. 教学实践、创新创业与社会实践可以二选一,完成后获得相应学分。
- (1) 教学实践(课程编号: 00006001, 学时 40): 主要是面向本科生的教学辅导工作,如在导师或任课教师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等,工作量不少于 40 学时。由导师或任课教师给出评语,学院给予书面证明,报学生所在学院备案。完成者获得 1 学分。
- (2) 创新创业与社会实践(课程编号: 00006002): 创新创业与社会实践学分认定范围主要包含五大类,即: 竞赛获奖、知识产权、科技成果转化、自主创业、社会实践等。研究生完成五类中任意一种类别,均可获得相应学分。具体界定如下:

竞赛获奖:指研究生参加由政府教育行政主管部门、专业学术团体、专业教学指导委员会组织 主办的国际、国家级学术科技类、创新创业类、文化艺术体育类等竞赛并获得省部级及以上奖项可 获得1个学分。

知识产权:包括发明专利、实用新型专利等,如外观设计专利、计算机软件著作权、集成电路 布图专有权等。完成后可申请1个学分。

科技成果转化:指研究生的专利以实施许可、技术转让或技术入股方式进行技术转移等。完成 后可申请 1 个学分。

自主创业:指研究生在校学习期间自主创建公司(应与所学专业相关),完成公司登记注册并顺利运营。完成后可申请1个学分。

社会实践:主要指研究生运用所学知识到地方政府、科研院所、企事业单位等开展基层挂职及调研、公益支教、扶贫服务、技术合作等实践项目。完成后根据要求提交总结或报告,并附相关证明材料,报所在学院备案。社会实践项目不得与联合培养基地专业实践项目重复。完成后可获得 1 个学分。

- 3. 学术活动(课程编号: 00006003, 1 个学分): 为了拓宽研究生的知识面,规定硕士生在校期间必须参加十次以上校内外学术活动,有举办学术单位的公章为依据,报学生所在学院备案,完成者获得1学分。
- 4. 人文教育与学术交流(课程编号: XX66XXXX): 硕士研究生在校期间必须参加每年 6 月举办的"人文教育与学术交流月"活动。参加讲座两次以上,有举办学术单位的公章为依据,提交学习报告,导师审核签字,计入学术活动;完成人文教育与学术交流课程至少 1 门,完成者获得相应必修环节学分。
- 5. 论文开题报告及文献阅读综述(课程编号: 00006009): 指研究生在学位论文开题之前,必须阅读本学科前沿国内外文献 20 篇以上,其中外文文献 10 篇以上,写出 4000 字左右的文献综述报告,附上不少于 1000 字的英文摘要;综述报告应提出值得研究和解决的学术或技术问题,并在此基础上完成相应的开题报告,完成者获得 1 学分。

七、学位论文

- (一)硕士学位论文的基本要求
- 1. 选题要求
- (1) 选题应着眼于行业、专业范围的前沿、热点、难点、重点问题,应具有较强的理论与现实 意义、应用价值,应满足创新性、科学性和可证伪性的原则。
- (2) 可将研究报告、规划设计、产品开发、案例分析、管理方案、发明专利、文学艺术作品等作为主要内容,以论文的形式表示。
- (3) 选题范围应尽量聚焦,本着"小题大做"的原则,就较为具体的问题展开深入的研究,原则上不应以全中国、全世界这样宽泛的视角作为选题视域。
- (4)论文选题应当进行查新,对相关研究、文献资料进行检索、梳理和综述,撰写开题报告,并进行专家论证,专家组应当由学界和业界人士共同组成。
 - 2. 学位论文形式和规范要求
- (1) 学位论文应在导师指导下,由硕士生本人独立完成。硕士学位论文必须是一篇系统完整的、 有创造性的学术论文。
- (2) 严格遵守学术规范,做到选题与资料规范、引用与注释规范、成果呈现规范、学术批评规范、学术评价规范。学位论文文字正确,语言通顺,数据可靠,表达清晰,引述准确,格式严谨,参考文献列举恰当,图、表、公式、单位等符合规范要求,力避剽窃、抬高、贬低、曲解或淡化他人学术观点。
- (3)硕士学位论文的书写格式一般应依次包括下述几部分:中英文题目、中英文摘要及关键词、独立完成与诚信声明、目录、选题的依据与意义、相关研究的国内外文献综述、正文部分、注释、结论、参考文献、必要的附录(数学证明、原始数据、发表论文等)、作者致谢、论文原创性声明和授权使用说明。
- (4) 论文的核心概念界定要严谨、准确,引用的概念只能来自学科内公认的学术论著;不能把普通字典、词典的解释作为学术研究的论据。
- (5) 论文参考文献应与论文的内容相关,应当是真正对论文的写作起到支持作用的文献,原则上,这些文献要能在论文中得以体现;必须要有适量的外文参考文献(一般至少三分之一)。
 - (6) 引用和注释要符合规定的写作要求,引证全面,不断章取义和歪曲引用。
 - 3. 学位论文水平要求
- (1) 学位论文应当在充分掌握本选题相关研究成果及原始材料的基础上,有一定深度与价值的见解。论文要能有一定的创新性,或通过科学的论证而获得新知识或新结论,或分析角度、研究方法能够对本专业有所启示。
- (2) 学位论文的基本理论依据或前提要可靠,必须以科学、公认的理论或真实、客观的事实为支撑。论据要充分、前后一致,不能无论据地主观得出结论或不证自明,不能把随笔杂感、经验总结、工作报告作为学术理论,不能把文艺作品作为论据来证明或证伪真实社会中的传播现象。
- (3) 学位论文的论证部分是论文的主体与核心,要科学、系统、合理、自治,不能只叙述问题或情况而没有核心观点或论证;不能把教材章节、领导报告、宣传文章、工作总结、新闻通讯等作为论文核心主体内容。
- (4) 学位论文应能反映出作者对该研究领域的基础理论、专业知识、研究方法有较好的掌握,同时展示作者具备一定的研究能力与业务技能。
 - (二)硕士学位论文工作

硕士学位论文的选题应对科技和社会发展有一定的价值。硕士生应在导师指导下确定选题和开展学位论文工作,校外导师参与论文环节的指导工作。

1. 开题报告

- (1) 开题报告时间。硕士生在确定选题,大量阅读文献的基础上,应在入学的第三学期末之前, 最迟应在第四学期末之前完成开题报告。
- (2) 开题报告方式。开题报告应以报告会的形式,在教(科)研室或以上范围公开举行; 开题报告会须有本学科及相近学科 3 位副教授或相当专业技术职称以上的专家组成考评组,考评组以校内专家为主,至少应有一位来自相关行(企)业或工程部门的专家。考评组对研究生开题作出考评意见。
- (3) 开题报告内容。依据《开题报告表》的要求,做开题报告。在开题报告会后,及时完成《开题报告表》,在学院审核后,由研究生科保存,以备检查。
- (4) 若开题报告没能通过,在导师的指导下 3 个月后才能申请重新开题。两次开题报告不过者, 应终止硕士生的学业。
 - (5) 因正当原因改变选题,须按上述要求重做开题报告。
 - (6) 论文开题通过1年后方能申请学位论文答辩。

2. 论文工作

硕士生应在校内外双导师指导下按计划按时完成学位论文工作。学位论文研究工作可采用应用基础研究、规划设计、产品开发等多种形式。

论文工作的时间应不少于1年,论文工作期间应每周一次向导师汇报研究进展;研究生到校外单位做学位论文,要经校内导师、学院批准,并保证每月一次向导师汇报研究进展,按时完成相应工作。

3. 学位论文撰写

硕士生在导师指导下,按照《研究生学位论文(研究报告)撰写格式规范》的要求,独立完成学位论文,导师应对硕士生学位论文严格审查,把好质量关。

4、学术论文发表要求

硕士研究生在申请学位论文答辩前,应同时满足以下两项条件:①参加导师的课题研究工作。②撰写课题研究报告(研究生名字需列入报告书)或项目申请书(研究生名字需列入申请书)或原创作品获校级及以上奖项或在公开出版的国内外核心学术刊物(或被索引源检索的国内外会议论文集)上发表或录用1篇相关专业学术论文,录用论文须提交相关的版面费付款证明。

(三)学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行,其中评阅、答辩考评组以校内专家为主,但至少应有一位相关行业具有高级职称(或相当水平)的专家。

机械工程领域 全日制工程硕士研究生培养方案

(专业代码:085201)

为了满足未来经济社会发展对高层次应用型专门人才的需求,工程硕士学位研究生培养已经成 为适应我国国民经济发展和社会主义建设的重要保证。机械工程是国民经济和社会发展的基础性领 域,是衡量国家科学技术现代化的重要标志之一。本领域以机械设计和制造为研究对象,充分运用 现代信息技术、计算机控制技术、网络技术、机电一体化技术等方法和手段,形成了机、电、信息 等多种学科交叉和高度融合的学科优势。本学院培养全日制工程硕士研究生应达到以下要求: 具有 扎实的理论基础和宽广的专业知识,具有较强的解决实际问题的能力,能够承担专业技术和相关管 理类工作,具有优良的职业素养的高层次应用型专门人才。

一、培养目标

全日制硕士专业学位获得者应具有本领域坚实的理论基础和系统的专业知识, 了解国内外机械 技术的发展现状和应用,掌握机械设计和先进制造技术中的方法与主流技术,具备计算机应用技能 和相关试验技能。培养从事机械装备设计、生产制造、检测与控制、使用及维修、计划与管理的高 级工程技术和工程管理人才。毕业生应能独立从事机械产品的研发、生产过程的控制与管理、工程 项目的开发与组织等。

二、研究方向

- 1. 可靠性设计与多学科设计优化 2. 数字化设计与仿真
- 3. 机构学与机器人
- 5. 传感器及驱动器
- 7. 微纳机电系统
- 9. 先进制造装备控制
- 4. 机电系统测控理论与技术
- 6. 智能机电系统及光机电一体化
- 8. 状态监测与故障诊断
- 10. 工业工程

三、培养方式和学习年限

全日制硕士专业学位研究生采用课程学习、实践教学和学位论文相结合的培养方式。通过课程 学习、实践教学和论文研究工作,掌握某一特定职业领域相关理论知识,培养解决实际问题的能力。 硕士研究生的培养采用校内外双导师共同指导的方式。

全日制硕士研究生学制为三年。提前完成硕士学业者,可申请提前半年毕业,若因客观原因不 能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过四年。

四、课程学习与学分基本要求

总学分要求不低于36学分,其中课程总学分不低于25学分,实践教学环节不低于6学分,必 修环节不低于 5 学分:课程学分中,学位课要求不低于 16 个学分。公共基础课必修,基础课至少 修1门, 多选一课程至少修1门。

允许在导师指导下、在相同学科门类或专业领域之间选修 1~2 门学位课作为本专业的学位课。 针对实践教学环节中开出的实验课程,可根据需要、进行跨学院跨专业选修。

学位课可以代替非学位课,但非学位课不能代替学位课。对于跨学科专业录取的硕士生,要求

补修相应专业本科核心课程至少2门,通过导师考核后,才能选修专业课。

研究生导师负责指导研究生制定个人培养计划和选课。导师指导研究生自学与研究课题有关的知识,并列入个人培养计划,但不计学分。校外导师参与课程学习、实践教学环节的指导工作。

五、课程设置

全日制硕士专业学位课程划分为学位课、非学位课、实践教学环节、必修环节四部分。

机械工程领域 全日制工程硕士研究生课程设置

类 别		课程编号	课程名称	学时	学分	开课 学期	考核 方式	备注
学位课	公共基础课	16005004	中国特色社会主义理论与实 践研究	36	2	1	考试	
		13005014	硕士研究生学位英语	90	3	1/2	考试	
		11005001	工程伦理与学术道德	20	1	1/2	考试	一 沙 .
		11005002	知识产权与信息检索	20	1	1/2	考试	二选一
	基础课	10005001	矩阵理论	60	3	1	考试	
		10006002	数值分析	60	3	1	考试	
		20005001	随机过程及应用	60	3	1	考试	
	专业基础课	08025002	机械动力学	40	2	2	考试	
		08015001	有限元分析与建模方法	40	2	1	考试	
		08035003	最优化设计方法	40	2	2	考试	
		08025005	现代控制理论	40	2	1	考试	
		08415004	机电测控技术	40	2	2	考试	
	专业选修课	08016001	数字化设计与制造	40	2	2		机械制造及其自 动化二级学科
非学位课		08036003	可靠性设计	40	2	2		机械设计及理论 二级学科
		08026001	电子设备热设计	40	2	2		机械电子工程 二级学科
		08045004	微机电系统设计与制造	40	2	1		精密仪器及机 械二级学科
		08046006	现代传感技术	40	2	2		精密仪器及机 械二级学科
		08026005	振动理论与声学原理	40	2	1		机械电子工程 二级学科
		08046004	测试信号分析与信息处理	40	2	1		精密仪器及机 械二级学科
		08415006	机械工程综合探索设计	40	2	1		

类 别 课程编		课程编号	课程名称	学时	学分	开课 学期	考核 方式	备注	
	其他选修课	16005011	自然辨证法概论	18	1	2	考查	公共选修	
		16005012	马克思主义与社会科学方法论	18	1	2	考查	二选一	
			实验课程						
		08888001	学科前沿知识专题讲座	20	1	1			
			跨专业领域或跨学科相关课程						
			基地专业实践						
		08415001	机器人系统构建与控制系统 设计	20	1	2			
		08415002	高档数控编程	20	1	2		West feft (/) !	
	实践教 対环节	08415003	机床电器系统的故障诊断技术	20	1	2		详见第"六" 点说明	
_	-	08415005	振动与控制系列实验	20	1	1			
		00405XXX	实践教学环节						
		其他要求	工程/项目设计、知名企业认 证考试等						
必	修环节		详见第"六"点说明						
			理论力学						
			机械原理						
四大 ,	当 4.11.	北井刘杨士	工程控制基础				具体课程选择		
))		考生补修本)课程	材料力学			不计学分	和门数根据导		
科核心课程		レトイエ	工程力学		师要求			师要求确定	
			机械设计基础						
			计算机图形学基础						

六、实践教学环节和必修环节

(一)实践教学环节:这是专业学位研究生培养过程中重要的特色培养环节,实践教学可采用集中实践与分段实践相结合的方式进行。可通过实践教学课程、基地实践、工程/项目设计、认证考试等方式完成,其中实践教学课程、基地实践为必修项目。

实践教学课程主要指突出实践训练的实验课程,全校可通选,完成者取得相应学分。

基地实践为 2-4 个学分,按照实践时间 1-3 个月、3-6 个月、6-12 个月及以上作为实践时间单位,分别认定为 2 学分、3 学分和 4 学分。要求提交实践总结报告,实践基地(单位)就学生提交的报告给予相关支撑书面材料证明,根据实际实践时间,经导师审核通过,可获得相应学分。

进行工程/项目设计者,导师负责审核把关,通过者可获得1个学分。

知名企业认证考试:通过由研究生院认定的知名企业的认证考试,并获得证书者,可获得相应学分。

(二)必修环节包含五个部分,要求研究生分别完成以下内容:

- 1. 素质教育公选课(课程编号: 00005XXX): 重点加强研究生综合素质教育,研究生可选修 1门,考核通过后获 1 个学分。
 - 2. 教学实践、创新创业与社会实践可以二选一,完成后获得相应学分。
- (1) 教学实践(课程编号: 00006001, 学时 40): 主要是面向本科生的教学辅导工作,如在导师或任课教师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等,工作量不少于 40 学时。由导师或任课教师给出评语,学院给予书面证明,报学生所在学院备案。完成者获得1学分。
- (2) 创新创业与社会实践(课程编号: 00006002): 创新创业与社会实践学分认定范围主要包含五大类,即:竞赛获奖、知识产权、科技成果转化、自主创业、社会实践等。研究生完成五类中任意一种类别,均可获得相应学分。具体界定如下:

竞赛获奖:指研究生参加由政府教育行政主管部门、专业学术团体、专业教学指导委员会组织 主办的国际、国家级学术科技类、创新创业类、文化艺术体育类等竞赛并获得省部级及以上奖项可 获得1个学分。

知识产权:包括发明专利、实用新型专利等,如外观设计专利、计算机软件著作权、集成电路 布图专有权等。完成后可申请1个学分。

科技成果转化:指研究生的专利以实施许可、技术转让或技术入股方式进行技术转移等。完成 后可申请 1 个学分。

自主创业:指研究生在校学习期间自主创建公司(应与所学专业相关),完成公司登记注册并顺利运营。完成后可申请1个学分。

社会实践:主要指研究生运用所学知识到地方政府、科研院所、企事业单位等开展基层挂职及调研、公益支教、扶贫服务、技术合作等实践项目。完成后根据要求提交总结或报告,并附相关证明材料,报所在学院备案。社会实践项目不得与联合培养基地专业实践项目重复。完成后可获得1个学分。

- 3. 学术活动(课程编号: 00006003, 1 个学分): 为了拓宽研究生的知识面,规定硕士生在校期间必须参加十次以上校内外学术活动,有举办学术单位的公章为依据,报学生所在学院备案,完成者获得1学分。
- 4. 人文教育与学术交流(课程编号: XX66XXXX): 硕士研究生在校期间必须参加每年 6 月举办的"人文教育与学术交流月"活动。参加讲座两次以上,有举办学术单位的公章为依据,提交学习报告,导师审核签字,计入学术活动;完成人文教育与学术交流课程至少 1 门,完成者获得相应必修环节学分。
- 5. 论文开题报告及文献阅读综述(课程编号: 00006009): 指研究生在学位论文开题之前,必须阅读本学科前沿国内外文献 20 篇以上,其中外文文献 10 篇以上,写出 4000 字左右的文献综述报告,附上不少于 1000 字的英文摘要;综述报告应提出值得研究和解决的学术或技术问题,并在此基础上完成相应的开题报告,完成者获得 1 学分。

七、学位论文

(一)硕士学位论文的基本要求

1. 选颢要求

论文选题应源于生产实际,或具有明确工程背景与应用价值,具有一定技术难度,能体现所学知识的综合运用,有足够工作量;论文研究应体现作者的知识更新及在具体工程应用中的新意,论文研究结果能对行业,特别是所在单位的技术进步起到促进作用。具体可以在以下几个方面选取:

(1) 技术攻关,技术改造,技术推广与应用;

- (2) 新产品、新设计、新工艺、新材料、新应用软件的研制与开发;
- (3) 引进、消化、吸收和应用国外先进技术项目;
- (4) 基础性应用研究或预研项目;
- (5) 工程设计与实施项目;
- (6) 较为完整的工程技术或工程管理项目的规划或研究;
- (7) 企业的标准化项目。

2. 形式要求

机械工程领域工程硕士专业学位的论文形式可以多样化,既可以是研究类学位论文,如应用研究论文,也可以是设计类和产品开发论文,如产品研发、工程设计等,还可以是软科学论文,如调查研究报告、工程管理论文等。

产品研发: 来源于机械领域生产实际的新产品研发、关键部件研发、以及对国内外先进产品的引进消化再研发,包括了各种软、硬件产品的研发。内容包括绪论、研发理论及分析、实施与性能测试及总结等部分。

工程设计:是指综合运用机械工程理论、科学方法、专业知识与技术手段、技术经济、人文和环保知识,对具有较高技术含量的工程项目、大型设备、装备及其工艺等问题从事的设计。设计方案科学合理、数据准确,符合国家、行业标准和规范,同时符合技术经济、环保和法律要求。内容包括绪论、设计报告、总结及必要的附件;可以是工程图纸、工程技术方案、工艺方案等,可以用文字、图纸、表格、模型等表述。

应用研究:是指直接来源于机械工程实际问题或具有明确的机械工程应用背景,综合运用基础理论与专业知识、科学方法与技术手段开展应用性研究。内容包括绪论、研究与分析、应用和检验及总结等部分。

工程/项目管理:项目管理是指机械领域一次性大型复杂工程任务的管理,研究的问题可以涉及项目生命周期的各个阶段或者项目管理的各个方面,也可以是企事业项目化管理、项目组合管理或多项目管理问题。工程管理是指以自然科学和机械工程技术为基础的工程任务的管理,可以研究机械工程的各职能管理问题,也可以涉及机械工程各方面的技术管理问题等。要求本领域问题和项目管理中存在的实际问题开展研究,对国内外解决该类问题的具有代表性的管理方法及相关领域的方法进行分析、选择或必要改进。对该类问题的解决方案进行设计,并对该解决方案进行案例分析和验证,或进行有效性和可行性分析。

调研报告:是指对机械及相关领域的工程和技术命题进行调研,通过调研发现本质,找出规律、给出结论,并针对存在或可能存在的问题提出建议或解决方案。包括绪论、调研方法、资料和数据分析、对策或建议及总结等部分。既要对被调研对象的国内外现状及发展趋势进行分析,又要调研该命题的内在因素及外在因素,并对其进行深入剖析。

3. 水平要求

机械领域工程硕士专业学位的学位论文的水平要求体现在以下方面:

- (1) 学位论文工作有一定的技术难度和深度,论文成果具有一定的先进性和实用性;
- (2) 学位论文工作应在导师指导下独立完成,论文工作量饱满;
- (3) 学位论文中的文献综述应对选题所涉及的工程技术问题或研究课题的国内外状况有清晰的描述与分析;
- (4) 学位论文的正文应综合应用基础理论、科学方法、专业知识和技术手段对所解决的科研问题或工程实际问题进行分析研究,并能在某些方面提出独立见解。
 - (5) 学位论文撰写要求概念清晰,逻辑严谨,结构合理,层次分明,文字通畅、图表清晰、概

念清楚、数据可靠、计算正确。

(二)硕士学位论文的工作

硕士学位论文的选题应对科技和社会发展有一定的价值。硕士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告

- (1) 开题报告时间。硕士生在确定选题,大量阅读文献的基础上,应在入学的第三学期末之前, 最迟应在第四学期末之前完成开题报告。
- (2) 开题报告方式。开题报告应以报告会的形式,在教(科)研室或以上范围公开举行;开题报告会须有本学科及相近学科3位副教授或相当专业技术职称以上的专家组成考评组,考评组以校内专家为主,至少应有一位来自相关行(企)业或工程部门的专家。考评组对研究生开题作出考评意见。
- (3) 开题报告内容。依据《开题报告表》的要求,做开题报告。在开题报告会后,及时完成《开题报告表》,在学院审核后,由研究生科保存,以备检查。
- (4) 若开题报告没能通过,在导师的指导下 3 个月后才能申请重新开题。两次开题报告不过者,应终止硕士生的学业。
 - (5) 因正当原因改变选题,须按上述要求重做开题报告。
 - (6) 论文开题通过1年后方能申请学位论文答辩。

2. 论文工作

硕士生应在校内外双导师指导下按计划按时完成学位论文工作。

论文工作的时间应不少于1年,论文工作期间应每周一次向导师汇报研究进展;研究生到校外单位做学位论文,要经校内导师、学院批准,并保证每月一次向导师汇报研究进展,按时完成相应工作。

3. 学位论文的撰写

硕士生在导师指导下,按照《研究生学位论文(研究报告)撰写格式规范》的要求,独立完成学位论文,导师应对硕士生学位论文严格审查,把好质量关。

(三)学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行,其中评阅、答辩考评组以校内专家为主,但至少应有一位相关行业具有高级职称(或相当水平)的专家。

光学工程领域 全日制工程硕士研究生培养方案

(专业代码:085202)

光学工程领域是光学与现代科学技术相结合的工程技术应用领域,主要利用从软 X 射线到亚毫米波段之间具有光学共性的电磁波段,应用光学原理和方法,并与精密机械、电子技术、计算机技术、控制技术紧密结合,解决、处理光学以及相关技术领域的科学研究和生产实践中的工程技术问题。

我校光学工程领域主要从事覆盖整个光学工程学科的理论及其相关应用方面的教学与科研,特别在光通信、集成光学与光电子器件、红外与传感技术、平板显示与成像技术等方面具有特色和优势,该学科承担了多项国家重点科研项目,科研经费充裕,且获得国家及部省级科研成果奖多项。该学科主要研究方向在国内处于前列,在国际上也有一定影响。

一、培养目标

光学工程专业学位硕士是与工程领域任职资格相联系的专业性学位,培养应用型、复合式高层次工程技术和工程管理人才。具体要求为:拥护党的基本路线和方针政策,热爱祖国,遵纪守法,具有良好的职业道德和敬业精神,具有科学严谨和求真务实的学习态度和工作作风,身心健康;掌握本领域的基础理论、先进技术方法和手段,在该领域的某一方向具有独立从事工程设计、工程实施、工程研究、工程开发、工程管理等能力;掌握一门外国语。

二、研究方向

- 1. 光通信与集成光学
- 3. 光电材料与集成器件
- 5. 传感技术

- 2. 激光技术及光电测控
- 4. 显示与成像技术
- 6. 真空电子技术

三、培养方式和学习年限

全日制硕士专业学位研究生采用课程学习、实践教学和学位论文相结合的培养方式。通过课程 学习、实践教学和论文研究工作,掌握某一特定职业领域相关理论知识,培养解决实际问题的能力。 硕士研究生的培养采用校内外双导师共同指导的方式。

全日制硕士专业学位研究生学制为三年。提前完成硕士学业者,可申请提前半年毕业;若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过四年。

四、学分要求与课程学习要求

总学分要求不低于 36 学分,其中课程总学分不低于 25 学分,实践教学环节不低于 6 学分,必修环节不低于 5 学分;课程学分中,学位课要求不低于 16 个学分,公共基础课必修,本学科基础课至少选修 1 门,本学科专业基础课至少选修 3 门,多选一课程至少选修 1 门。

允许在导师指导下、在相近学科门类或专业领域之间选修 1~2 门学位课作为本专业的学位课。 针对实践教学环节中开出的实验课程,可根据需要、进行跨学院跨专业选修。

学位课可以代替非学位课,但非学位课不能代替学位课。对于跨学科专业录取的硕士生,要求 补修相应专业本科核心课程至少 2 门,通过导师考核后,才能选修专业课。

研究生导师负责指导研究生制定个人培养计划和选课。导师指导研究生自学与研究课题有关的

知识,并列入个人培养计划,但不计学分。校外导师参与课程学习、实践教学环节的指导工作。

五、课程设置

全日制硕士专业学位研究生课程划分为学位课、非学位课、实践教学环节、必修环节四部分。

光学工程领域 全日制工程硕士研究生课程设置

	类别	课程编号	课程名称	学时	学分	开课 学期	考核 方式	备注
学位	公共基础课	16005004	中国特色社会主义理论与实践研究	36	2	1	考试	
		13005014	硕士研究生学位英语	90	3	1/2	考试	
		11005001	工程伦理与学术道德	20	1	1/2	考试	— v4.
		11005002	知识产权与信息检索	20	1	1/2	考试	二选一
	基础课	10005004	数学物理方程与特殊函数	60	3	1	考试	
		10006002	数值分析	60	3	1	考试	
	专业 基础课	05015002	光学原理	40	2	1	考试	
		05015003	半导体光电子学	40	2	2	考试	
		05015005	敏感材料与传感器	40	2	1	考试	
		05015010	光电信息检测	40	2	2	考试	
		05015012	光电薄膜材料与技术	40	2	1	考试	
		05016029	光电探测技术	40	2	1	考试	
		05016030	激光技术及应用	30	1.5	2	考试	
		01046009	高等光学	40	2	1	考试	
		01046004	光电子器件理论与技术	40	2	1	考试	
课		20005004	光波导理论与技术	40	2	1		
		20006015	图像处理及应用	40	2	1		
		05016032	光纤通信技术	40	2	2		
		05016014	液晶光电子学	40	2	2		
		05016017	平板显示驱动技术	20	1	1		
		05016018	薄膜晶体管原理与技术	20	1	1		
	专业选	05016019	大气光学和空间光信息系统	40	2	1		
	修课	05016024	声光技术	20	1	1		
		05016027	现代光电视觉系统及仪器设计	20	1	2		
		05017005	显示技术导论	40	2	2		
		05017009	微传感器原理与技术	40	2	2		
		01046001	光网络及其控制技术	40	2	1		
		01046008	光调制与处理技术	40	2	2		
		01047005	光纤传感技术	40	2	1		

	类别	课程编号	课程名称	学时	学分	开课 学期	考核 方式	备注
		16005011	自然辨证法概论	18	1	2	考查	二选一
	++ /.1.	16005012	马克思主义与社会科学方法论	18	1	2	考查	
	其他 选修课		实验课程					
	起廖体	05888001	学科前沿知识专题讲座					
			跨专业领域或跨学科相关课程					
		05416005	声光无损检测	20	1	2		
		05416007	新型传感器设计	20	1	2		
		05416009	光纤通信技术实验	40	2	2		详见
2	实践教	05416010	机器视觉系统设计与实验	20	1	2		第 "六"
<u> </u>	学环节	05416011	半导体照明器件封装及测试	20	1	2		点说
		00405XXX	实践教学环节					明
		其他要求	工程/项目设计、知名企业认证考试等					
			基地专业实践					
必	修环节		详见第"六"点说明					
п	ケルムナー	· 在 14 岁 45	物理光学					
	含字科专业 补修本科	2领域考生 核心课程	激光原理		不计	学分		
	TI 19444	以"小作						

六、实践教学环节和必修环节

(一)实践教学环节:这是专业学位研究生培养过程中重要的特色培养环节,实践教学可采用集中实践与分段实践相结合的方式进行。可通过实践教学课程、基地实践、工程/项目设计、认证考试等方式完成,其中实践教学课程、基地实践为必修项目。

实践教学课程主要指突出实践训练的实验课程,全校可通选,完成者取得相应学分。

基地实践为 2-4 个学分,按照实践时间 1-3 个月、3-6 个月、6-12 个月及以上作为实践时间单位,分别认定为 2 学分、3 学分和 4 学分。要求提交实践总结报告,实践基地(单位)就学生提交的报告给予相关支撑书面材料证明,根据实际实践时间,经导师审核通过,可获得相应学分。

进行工程/项目设计者,导师负责审核把关,通过者可获得1个学分。

知名企业认证考试:通过由研究生院认定的知名企业的认证考试,并获得证书者,可获得相应学分。

- (二)必修环节包含五个部分,要求研究生分别完成以下内容:
- 1. 素质教育公选课(课程编号: 00005XXX): 重点加强研究生综合素质教育,研究生可选修 1门,考核通过后获 1 个学分。
 - 2. 教学实践、创新创业与社会实践可以二选一,完成后获得相应学分。
- (1) 教学实践(课程编号: 00006001, 学时 40): 主要是面向本科生的教学辅导工作,如在导师或任课教师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等,工作量不少于 40

学时。由导师或任课教师给出评语,学院给予书面证明,报学生所在学院备案。完成者获得1学分。

(2) 创新创业与社会实践(课程编号: 00006002): 创新创业与社会实践学分认定范围主要包含五大类,即: 竞赛获奖、知识产权、科技成果转化、自主创业、社会实践等。研究生完成五类中任意一种类别,均可获得相应学分。具体界定如下:

竞赛获奖:指研究生参加由政府教育行政主管部门、专业学术团体、专业教学指导委员会组织 主办的国际、国家级学术科技类、创新创业类、文化艺术体育类等竞赛并获得省部级及以上奖项可 获得1个学分。

知识产权:包括发明专利、实用新型专利等,如外观设计专利、计算机软件著作权、集成电路 布图专有权等。完成后可申请1个学分。

科技成果转化:指研究生的专利以实施许可、技术转让或技术入股方式进行技术转移等。完成 后可申请 1 个学分。

自主创业:指研究生在校学习期间自主创建公司(应与所学专业相关),完成公司登记注册并顺利运营。完成后可申请1个学分。

社会实践:主要指研究生运用所学知识到地方政府、科研院所、企事业单位等开展基层挂职及调研、公益支教、扶贫服务、技术合作等实践项目。完成后根据要求提交总结或报告,并附相关证明材料,报所在学院备案。社会实践项目不得与联合培养基地专业实践项目重复。完成后可获得1个学分。

- 3. 学术活动(课程编号: 00006003, 1 个学分): 为了拓宽研究生的知识面,规定硕士生在校期间必须参加十次以上校内外学术活动,有举办学术单位的公章为依据,报学生所在学院备案,完成者获得1学分。
- 4. 人文教育与学术交流(课程编号: XX66XXXX): 硕士研究生在校期间必须参加每年 6 月举办的"人文教育与学术交流月"活动。参加讲座两次以上,有举办学术单位的公章为依据,提交学习报告,导师审核签字,计入学术活动;完成人文教育与学术交流课程至少 1 门,完成者获得相应必修环节学分。
- 5. 论文开题报告及文献阅读综述(课程编号: 00006009): 指研究生在学位论文开题之前,必须阅读本学科前沿国内外文献 20 篇以上,其中外文文献 10 篇以上,写出 4000 字左右的文献综述报告,附上不少于 1000 字的英文摘要;综述报告应提出值得研究和解决的学术或技术问题,并在此基础上完成相应的开题报告,完成者获得 1 学分。

七、学位论文

(一)硕士学位论文的基本要求

1. 选题要求

选题直接来源于生产实际或具有明确的工程背景,其研究成果要有实际应用价值,拟解决的问题要有一定的技术难度和工作量,选题要具有一定的理论深度和先进性。具体可以从以下方面选取:

- (1) 技术攻关、技术改造、技术推广与应用。
- (2) 新产品、新设备、新工艺的研制与开发。
- (3) 引进、消化、吸收和应用国外先进技术项目。
- (4) 应用基础性研究、预研专题。
- (5) 一个较为完整的工程技术项目或工程管理项目的规划或研究。
- (6) 光学工程设计与项目实施。
- (7) 实验和实验方法研究。

- (8) 技术标准或行业标准、规划的制定。
- 2. 形式及其内容要求

可以是研究类学位论文,如应用研究论文,也可以是设计类和产品开发类论文,如产品研发、 工程设计等,还可以是软科学论文,如调查研究报告、工程管理论文等。

应用研究:是指直接来源于光学工程实际问题或具有明确的光学工程应用背景,综合运用基础理论与专业知识、科学方法和技术手段开展应用性研究。论文内容包括绪论、研究与分析、应用和检验及总结等部分。

产品研发:是指来源于光学工程领域生产实际的新产品研发、关键部件研发,以及对国内外先进产品的引进消化再研发,包括了各种软、硬件产品的研发。论文内容包括绪论、研发理论及分析、实施与性能测试及总结等部分。

工程设计:是指综合运用光学工程理论、科学方法、专业知识与技术手段、技术经济、人文和环保知识,对具有较高技术含量的工程项目、大型设备、装备及其工艺等问题从事的设计。设计方案科学合理、数据准确,符合国家、行业标准和规范,同时符合技术经济、环保和法律要求。论文内容包括绪论、设计报告、总结及必要的附件;可以是工程图纸、工程技术方案、工艺方案等,可以用文字、图纸、表格、模型等表述。

调研报告:是指对光学工程及相关领域的工程和技术命题进行调研,通过调研发现本质,找出规律,给出结论,并针对存在或可能存在的问题提出建议或解决方案。报告内容包括绪论、调研方法、资料和数据分析、对策或建议及总结等部分。既要对被调研对象的国内外现状及发展趋势进行分析,又要调研该命题的内在因素及外在因素,并对其进行深入剖析。

工程与项目管理:项目管理是指光学工程领域一次性大型复杂工程任务的管理,研究的问题可以涉及项目生命周期的各个阶段或者项目管理的各个方面。工程管理是指以光学工程技术为基础的工程任务的管理,可以研究工程的各职能管理问题,也可以涉及工程各方面的技术管理问题。要求收集的数据可靠、充分,理论建模和分析方法科学正确,对研究结果进行案例分析,对解决方案进行验证或进行有效性和可行性分析。论文内容包括绪论、理论方法综述、解决方案设计、案例分析或有效性分析及总结等部分。

3. 水平要求

- (1) 学位论文工作有一定的技术难度和深度,论文成果具有一定的先进性和实用性。
- (2) 学位论文工作应在导师指导下独立完成,论文工作量饱满。
- (3) 学位论文中的文献综述应对选题所涉及的工程技术问题或研究课题的国内外状况有清晰的描述与分析。
- (4) 学位论文的正文应综合应用基础理论、科学方法、专业知识和技术手段对所解决的科研问题或工程实际问题进行分析研究,并能在某些方面提出独立见解。
- (5) 学位论文撰写要求概念清晰,逻辑严谨,结构合理,层次分明,文字通畅,图表清晰,数据可靠,计算正确,格式规范,引用文献应明确标注。
 - (6)在论文期间鼓励发表一定数量和质量的学术论文,申请发明专利等具有一定创新性的成果。
 - (二)硕士学位论文工作

硕士生应在导师指导下确定选题和开展学位论文工作,校外导师参与论文环节的指导工作。

1. 开题报告

- (1) 开题报告时间。硕士生在确定选题,大量阅读文献的基础上,应在入学的第三学期末之前, 最迟应在第四学期末之前完成开题报告。
 - (2) 开题报告方式。开题报告应以报告会的形式,在教(科)研室或以上范围公开举行;开题

报告会须有本学科及相近学科 3 位副教授或相当专业技术职称以上的专家组成考评组,考评组以校内专家为主,至少应有一位来自相关行(企)业或工程部门的专家。考评组对研究生开题作出考评意见。

- (3) 开题报告内容。依据《开题报告表》的要求,做开题报告。在开题报告会后,及时完成《开题报告表》,在学院审核后,由研究生科保存,以备检查。
- (4) 若开题报告没能通过,在导师的指导下3个月后才能申请重新开题。两次开题报告不过者,应终止硕士生的学业。
 - (5) 因正当原因改变选题,须按上述要求重做开题报告。
 - (6) 论文开题通过1年后方能申请学位论文答辩。

2. 论文工作

硕士生应在校内外双导师指导下按计划按时完成学位论文工作。

论文工作的时间应不少于1年,论文工作期间应每周一次向导师汇报研究进展;研究生到校外单位做学位论文,要经校内导师、学院批准,并保证每月一次向导师汇报研究进展,按时完成相应工作。

3. 学位论文的撰写

硕士生在导师指导下,按照《研究生学位论文(研究报告)撰写格式规范》的要求,独立完成学位论文,导师应对硕士生学位论文严格审查,把好质量关。

(三)学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行,其中评阅、答辩考评组以校内专家为主,但至少应有一位相关行业具有高级职称(或相当水平)的专家。

仪器仪表工程领域 全日制工程硕士研究生培养方案

(专业代码:085203)

仪器仪表工程是现代科学与技术的重要组成部分,已成为一个国家科学技术现代化的重要标志。本学科与信息、通信工程、计算机科学与技术、电子科学与技术、控制科学与工程紧密联系并相互支持。

本学科师资力量雄厚,其总体水平处于该领域国内领先行列。随着"211"工程的建设和发展,研究条件的改善提高,本学科在自动测试与系统集成技术、测试技术与仪器设计、数据域测试技术、计算机测控技术、微波毫米波测试技术、计量测试技术、电子精密机械测试系统、微系统与测试技术、精密仪器及智能机电系统等领域研究上将具有更大优势。

一、培养目标

热爱祖国,遵纪守法,具有良好的道德品质;应掌握仪器仪表工程领域的基础理论、先进技术方法和现代技术手段,具有解决仪器仪表工程领域工程问题或在领域的某一方向具有独立从事工程研究、工程开发、工程设计、工程实施和管理等能力。了解仪器仪表工程领域的技术现状与发展趋势;掌握解决仪器仪表工程领域工程问题必要的实验、分析、检测或计算的方法和技术。能够胜任仪器仪表工程领域高层次工程技术和工程管理工作。

二、研究方向

- 1. 自动测试与系统集成技术
- 3. 数据域测试技术
- 5. 微波毫米波测试技术
- 7. 电子精密机械测试系统
- 9. 精密仪器及智能机电系统
- 2. 测试技术与仪器设计
- 4. 计算机测控技术
- 6. 计量测试技术
- 8. 微系统与测试技术

三、培养方式和学习年限

全日制硕士专业学位研究生采用课程学习、实践教学和学位论文相结合的培养方式。通过课程 学习、实践教学和论文研究工作,掌握某一特定职业领域相关理论知识,培养解决实际问题的能力。 硕士研究生的培养采用校内外双导师共同指导的方式。

全日制硕士专业学位研究生学制为三年。提前完成硕士学业者,可申请提前半年毕业;若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过四年。

四、学分要求与课程学习要求

总学分要求不低于 36 个学分,其中课程总学分不低于 25 学分(学位课、非学位选修课),实践教学环节不低于 6 学分,必修环节不低于 5 学分。课程学分中,学位课不低于 16 学分,公共基础课必修,基础课至少选修一门,专业基础课不低于 4 个学分,多选一课程至少修 1 门。

允许在导师指导下、在相近学科门类与专业领域之间跨学科选修 1~2 门学位课作为本学科的学位课。针对实践教学环节中开出的实验课程,可根据专业需要、进行跨学院跨专业领域选修。

学位课可以代替非学位课,但非学位课不能代替学位课。跨学科专业录取的硕士研究生应至少

补修本专业本科核心课程2门,通过导师考核后,才能选修专业课。

研究生导师负责指导研究生制定个人培养计划和选课。导师指导研究生自学与研究课题有关的知识,并列入个人培养计划,但不计学分。校外导师参与课程学习、实践教学环节的指导工作。

五、课程设置

全日制硕士专业学位研究生课程划分为学位课、非学位课、实践教学环节、必修环节四部分。

仪器仪表工程领域全日制工程硕士研究生课程设置

	类别	课程编号	课程名称	学时	学分	开课 学期	考核 方式	备注
		16005004	中国特色社会主义理论与实践研究	36	2	1	考试	
	公共	13005014	硕士研究生学位英语	90	3	1/2	考试	
	基础课	11005001	工程伦理与学术道德	20	1	1/2	考试	二选一
		11005002	知识产权与信息检索	20	1	1/2	考试	
		10005001	矩阵理论	60	3	1	考试	
	基础课	10005004	数学物理方程与特殊函数	60	3	1	考试	
学位	垄Ш床	10006003	图论及应用	60	3	2	考试	
课		20005001	随机过程及应用	60	3	1	考试	
		07015001	计量方法与误差理论	40	2	2	考试	
		07015012	信号处理方法及应用	40	2	2	考试	
	专业	07017001	现代信号处理	40	2	2	考试	
	基础课	07017004	微波测量	40	2	1	考试	
		07037001	现代检测技术	40	2 2	1	考试	
		20006001	*信号检测与估计	40	2	1	考试	
		07015005	射频电路设计	40	2	2		
		07015006	EMC 测试技术	30	1.5	1		
		07015011	现代时域测试	40	2	1		
非		07015013	精密测试	30	1.5	1		
学		07015015	电子系统故障诊断与测试性技术	30	1.5	2		
位	专业	07015016	微波电路的设计、优化及测试技术	30	1.5	2		
选	选修课	07015017	高速数据采集及处理技术	40	2	1		
修		07025001	电气传动与自动控制	20	1	2		
课		07026005	自适应控制	40	2	2		
		07027005	智能控制理论及应用	40	2	2		
		07047003	计算机视觉	40	2	1		
		07047004	机器学习	40	2	2		

		07887001	学科前沿知识专题讲座	20	1	1		
		08415004	机电测控技术	40	2	2		
		20007001	模式识别	40	2	1		
		16005011	自然辨证法概论	18	1	2	考查	公共选修
		16005012	马克思主义与社会科学方法论	18	1	2	考查	二选一
非		01016009	ASIC 设计	40	2	2		
学		01016014	DSP 技术与算法实现	40	2	1		
位		01025006	电子系统的射频与天线	40	2	1		
选	++ /.1.	01047005	光纤传感技术	40	2	2		
修	其他 选修课	02036001	近代微波网络理论及应用	40	2	1		
课	起廖怀	02046009	现代数字信号处理理论与算法	60	3	2		
		05015002	光学原理	40	2	1		
		20006002	高等电磁场理论	50	2.5	1		
		20006016	现代通信系统中的微波电路	40	2	2		
			实验课程					
			跨专业领域或跨学科相关课程					
			基地专业实践					
		07415004	嵌入式系统设计	30	1.5	2		
		07415005	计算机控制集成技术	40	2	1		\\ \D \
5	实践教	07426003	仪器设计技术	50	2.5	1		详见第 "六"点
7	学环节	07426004	时域测试技术综合实验	40	2	2		説明 説明
		07426005	测试系统集成技术	40	2	2		,,,,
			其他跨专业或跨领域实践教学选修课					
		其他要求	工程/项目设计、知名企业认证考试等					
必	修环节		详见第"六"点说明					
D1-F	5 24 44 TH TH	电子测量原理						
	ライン ・ 学科を科権	2领域考生 核心课程	模拟电路基础		不计	学分		
			自动测试系统					

六、实践教学环节和必修环节

(一)实践教学环节:这是专业学位研究生培养过程中重要的特色培养环节,实践教学可采用集中实践与分段实践相结合的方式进行。可通过实践教学课程、基地实践、工程/项目设计、认证考试等方式完成,其中实践教学课程、基地实践为必修项目。

实践教学课程主要指突出实践训练的实验课程,全校可通选,完成者取得相应学分。

基地实践为 2-4 个学分, 按照实践时间 1-3 个月、3-6 个月、6-12 个月及以上作为实践时间单位,

分别认定为2学分、3学分和4学分。要求提交实践总结报告,实践基地(单位)就学生提交的报告给予相关支撑书面材料证明,根据实际实践时间,经导师审核通过,可获得相应学分。

进行工程/项目设计者,导师负责审核把关,通过者可获得1个学分。

知名企业认证考试:通过由研究生院认定的知名企业的认证考试,并获得证书者,可获得相应学分。

- (二)必修环节包含五个部分,要求研究生分别完成以下内容:
- 1. 素质教育公选课(课程编号: 00005XXX): 重点加强研究生综合素质教育,研究生可选修 1门,考核通过后获 1 个学分。
 - 2. 教学实践、创新创业与社会实践可以二选一,完成后获得相应学分。
- (1) 教学实践(课程编号: 00006001, 学时 40): 主要是面向本科生的教学辅导工作,如在导师或任课教师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等,工作量不少于 40 学时。由导师或任课教师给出评语,学院给予书面证明,报学生所在学院备案。完成者获得 1 学分。
- (2) 创新创业与社会实践(课程编号: 00006002): 创新创业与社会实践学分认定范围主要包含五大类,即: 竞赛获奖、知识产权、科技成果转化、自主创业、社会实践等。研究生完成五类中任意一种类别,均可获得相应学分。具体界定如下:

竞赛获奖:指研究生参加由政府教育行政主管部门、专业学术团体、专业教学指导委员会组织 主办的国际、国家级学术科技类、创新创业类、文化艺术体育类等竞赛并获得省部级及以上奖项可 获得1个学分。

知识产权:包括发明专利、实用新型专利等,如外观设计专利、计算机软件著作权、集成电路 布图专有权等。完成后可申请1个学分。

科技成果转化:指研究生的专利以实施许可、技术转让或技术入股方式进行技术转移等。完成 后可申请1个学分。

自主创业:指研究生在校学习期间自主创建公司(应与所学专业相关),完成公司登记注册并顺利运营。完成后可申请1个学分。

社会实践:主要指研究生运用所学知识到地方政府、科研院所、企事业单位等开展基层挂职及调研、公益支教、扶贫服务、技术合作等实践项目。完成后根据要求提交总结或报告,并附相关证明材料,报所在学院备案。社会实践项目不得与联合培养基地专业实践项目重复。完成后可获得1个学分。

- 3. 学术活动(课程编号: 00006003, 1 个学分): 为了拓宽研究生的知识面,规定硕士生在校期间必须参加十次以上校内外学术活动,有举办学术单位的公章为依据,报学生所在学院备案,完成者获得1学分。
- 4. 人文教育与学术交流(课程编号: XX66XXXX): 硕士研究生在校期间必须参加每年 6 月举办的"人文教育与学术交流月"活动。参加讲座两次以上,有举办学术单位的公章为依据,提交学习报告,导师审核签字,计入学术活动;完成人文教育与学术交流课程至少 1 门,完成者获得相应必修环节学分。
- 5. 论文开题报告及文献阅读综述(课程编号: 00006009): 指研究生在学位论文开题之前,必须阅读本学科前沿国内外文献 20 篇以上,其中外文文献 10 篇以上,写出 4000 字左右的文献综述报告,附上不少于 1000 字的英文摘要;综述报告应提出值得研究和解决的学术或技术问题,并在此基础上完成相应的开题报告,完成者获得 1 学分。

七、学位论文

(一)硕士学位论文的基本要求

1. 选题要求

论文选题应直接来源于仪器仪表生产实际或具有明确的仪器仪表工程背景,其研究成果要有社会价值和实际应用价值;论文选题要有一定的技术难度,达到硕士层次的知识水平,具有一定的先进性或创新性;论文要有足够的独立完成的工作量,具体可在以下几个方面选取:

- (1) 一个较为完整的工程技术项目或工程管理项目的规划或研究;
- (2) 仪器仪表工程设计与实施;
- (3) 技术攻关、技术改造、技术推广与应用;
- (4) 新产品、新设备、新工艺的研制与开发;
- (5) 引进、消化、吸收和应用国外先进技术项目;
- (6) 行业或企业发展中急需解决的本领域工程与项目管理问题;
- (7) 试验和试验方法研究:
- (8) 技术标准的制定:
- (9) 其他与仪器仪表工程领域相关的课题。

2. 形式要求

学位论文的形式可以多样化,既可以是设计类和产品类开发类论文,如产品研发、工程设计等, 也可以是研究类学位论文,如应用研究论文,还可以是软科学论文,如工程管理论文等。

产品研发:是指来源于仪器仪表领域生产实际的新产品研发,关键部件研发,以及对国内外先进产品的引进消化再研发,包括了各种软、硬件产品的研发。内容包括绪论、研发理论及分析、实施与性能测试及总结等部分。

工程设计:是指综合运用仪器仪表工程理论、科学方法、专业知识与技术手段、技术经济、人文和环保知识,对具有较高技术含量的工程项目、大型设备、装备及其工艺等问题从事的设计。设计方案科学合理、数据准确,符合国家、行业标准和规范,同时符合技术经济、环保和法律要求,内容包括绪论、设计报告、总结及必要的附件,可以使工程图纸、工程技术方案、工艺方案等,可以用文字、图纸、表格、模型等表述。

应用研究:是指直接来源于仪器仪表工程实际问题或具有明确的仪器仪表工程应用背景,综合运用基础理论与专业知识、科学方法和技术手段开展应用性研究。内容包括绪论、研究与分析、应用和检验及总结等部分。

工程与项目管理:项目管理是指仪器仪表工程领域一次性大型复杂工程任务的管理,研究的问题可以涉及项目生命周期的各个阶段或者项目管理的各个方面,也可以是企事业项目化管理、项目组合管理或多项目管理问题。工程管理是指以自然科学和仪器仪表工程技术为基础的工程任务,可以研究仪器仪表工程的各职能管理问题,也可以涉及仪器仪表工程的各方面技术管理问题等。内容包括绪论、理论方法综述、解决方案设计、案例分析或有效性分析及总结等部分;要求就本领域工程与项目管理中存在的实际问题开展研究,对国内外解决该类问题的具有代表性的管理方法及相关领域的方法进行分析、选择或必要的改进。对该类问题的解决方案进行设计,并对该解决方案进行案例分析和验证,或进行有效性和可行性分析。

3. 水平要求

仪器仪表工程领域工程硕士专业学位的学位论文的水平要求体现在以下方面:

(1) 学位论文工作有一定的技术难度和深度,论文成果具有一定的先进性和实用性。

- (2) 学位论文工作应在导师指导下独立完成,论文工作量饱满。
- (3) 学位论文中的文献综述应对选题所涉及的工程技术问题或研究课题的国内外状况有清晰地描述与分析。
- (4) 学位论文的正文应综合应用基础理论、科学方法、专业知识和技术手段对所解决的科研问题或工程实际问题进行分析研究,并能在某些方面提出独立见解。
- (5) 学位论文撰写要求概念清晰,逻辑严谨,结构合理,层次分明,文字通畅,图表清晰,概念清晰,数据可靠,计算正确,正文字数不少于2.5万,调研报告正文字数不少于3万字。

通过学位论文研究及其所开展的科研、技术开发或改造、工程或项目管理等活动,对相对独立 完成的课题或取得的阶段性成果进行总结,鼓励发表一定数量和质量的学术论文或申请发明专利等 具有一定创新性的成果。

(二)硕士学位论文工作

硕士学位论文的选题应对科技和社会发展有一定的价值。硕士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告

- (1) 开题报告时间。硕士生在确定选题,大量阅读文献的基础上,应在入学的第三学期末之前,最迟应在第四学期末之前完成开题报告。
- (2) 开题报告方式。开题报告应以报告会的形式,在教(科)研室或以上范围公开举行;开题报告会须有本学科及相近学科3位副教授或相当专业技术职称以上的专家组成考评组,考评组以校内专家为主,至少应有一位来自相关行(企)业或工程部门的专家。考评组对研究生开题作出考评意见。
- (3) 开题报告内容。依据《开题报告表》的要求,做开题报告。在开题报告会后,及时完成 《开题报告表》,在学院审核后,由研究生科保存,以备检查。
- (4) 若开题报告没能通过,在导师的指导下 3 个月后才能申请重新开题。两次开题报告不过者,应终止硕士生的学业。
 - (5) 因正当原因改变选题,须按上述要求重做开题报告。
 - (6) 论文开题通过1年后方能申请学位论文答辩。

2. 论文工作

硕士生应在校内外双导师指导下按计划按时完成学位论文工作。

论文工作的时间应不少于1年,论文工作期间应每周一次向导师汇报研究进展;研究生到校外单位做学位论文,要经校内导师、学院批准,并保证每月一次向导师汇报研究进展,按时完成相应工作。

3.学位论文的撰写

硕士生在导师指导下,按照《研究生学位论文(研究报告)撰写格式规范》的要求,独立完成学位论文,导师应对硕士生学位论文严格审查,把好质量关。

(三)学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行,其中评阅、答辩考评组以校内专家为主,但至少应有一位相关行业具有高级职称(或相当水平)的专家。

材料工程领域 全日制工程硕士研究生培养方案

(专业代码:085204)

"材料工程"是主要研究材料的组成、结构、制备工艺与其性能及使用过程间相互关系的科学与技术,主要研究电、磁、声、光、热、力及生物等功能材料及应用的理论、设计、制备、检测等,涉及到信息的获取、转换、存储、处理与控制等。它包括"材料学"和"材料物理与化学"两个二级学科。

随着科学技术的发展,本学科与其它学科的交叉越来越紧密,如微电子学与固体电子学、电子科学与技术、信息与通信工程、计算机科学与技术、控制科学与工程、仪器科学与技术、生物医学等。我校是国家"211"工程重点建设学科,特色和优势在于对电子信息材料及应用的研究和开发。本学科现有博士生导师 31 名,教授 33 名和一批由年轻博士为梯队的学术队伍,拥有先进的实验设备和充足的科研经费。

作为当代文明的重要支柱,本学科已成为现代科学技术发展的先导和基础,与整个社会的发展 有着极为密切的依存关系。

一、培养目标

本学科定位于培养在材料工程领域,特别是电子信息材料的物理与化学方面具备坚实的基础理论,系统的专业知识,掌握必要的电子科学、计算机应用及材料的微观结构分析和宏观特性测试技术的人才。培养在材料工程领域掌握坚实的理论基础和系统的专门知识、熟识各种新型材料的研制、加工和测试分析技术,具有熟练的计算机技能和外语水平,能从事材料科学与工程研究、教学工作或工程技术与工程管理的高级人才。

本学科硕士学位获得者应:政治合格、热爱祖国、热爱人民、献身伟大祖国的社会主义现代化建设事业;学风正派、工作严谨求实,善于与人团结共事;能胜任本专业的科研、教学、产业部门的技术工作、或以上领域的技术管理工作等。

二、研究方向

1. 电子薄膜与集成器件

10. 新能源材料与器件

- 2. 磁性材料与器件
- 3. 电子材料及器件

- 4. 半导体材料与器件
- 5. 材料化学与工程
- 6. 纳米电子材料

- 7. 敏感与智能材料
- 8. 材料分析表征
- 9. 电子陶瓷与器件

三、培养方式和学习年限

全日制硕士专业学位研究生采用课程学习、实践教学和学位论文相结合的培养方式。通过课程 学习、实践教学和论文研究工作,掌握某一特定职业领域相关理论知识,培养解决实际问题的能力。 硕士研究生的培养采用校内外双导师共同指导的方式。

全日制硕士专业学位研究生学制为三年。提前完成硕士学业者,可申请提前半年毕业;若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过四年。

四、学分与课程学习基本要求

总学分要求不低于 36 学分,其中课程总学分不低于 25 学分,实践教学环节不低于 6 学分,必修环节不低于 5 学分;课程学分中,学位课要求不低于 16 个学分,公共基础课必修,基础课至少选修 1 门,多选一课程至少修 1 门。

允许在导师指导下、在相近学科门类或专业领域之间选修 1~2 门学位课作为本专业的学位课。 针对实践教学环节中开出的实验课程,可根据需要、进行跨学院跨专业选修。

学位课可以代替非学位课,但非学位课不能代替学位课。对于跨学科专业录取的硕士生,要求 补修相应专业本科核心课程至少 2 门,通过导师考核后,才能选修专业课。

研究生导师负责指导研究生制定个人培养计划和选课。导师指导研究生自学与研究课题有关的知识,并列入个人培养计划,但不计学分。校外导师参与课程学习、实践教学环节的指导工作。

五、课程设置

全日制硕士专业学位研究生课程划分为学位课、非学位课、实践教学环节、必修环节四部分。

材料工程领域 全日制工程硕士研究生课程设置

1	类 别	课程编号	课程名称	学时	学分	开课 学期	考核方式	备注
		16005004	中国特色社会主义理论与实践	36	2	1	考试	
	公共	13005014	硕士研究生学位英语	90	3	1/2	考试	
	基础课	11005001	工程伦理与学术道德	20	1	1/2	考试	二选
		11005002	知识产权与信息检索	20	1	1/2	考试	→
学位	甘力以田	10005001	矩阵理论	60	3	1	考试	
课	基础课	10005004	数学物理方程与特殊函数	60	3	1	考试	
		03025002	铁磁学	40	2	1	考试	
	专业	20005006	材料表面与界面物理	50	3 1 考试 2 1 考试 2.5 1 考试 2.5 1 考试 2.5 2 考试 2 1 考试/考查 2 2 考试/考查			
	基础课	20005007	信息材料基础	50	2.5	1	考试	
		20005008	电子陶瓷物理	50	2.5	2	考试	
		03027002	材料设计与计算	40	2	1	考试/考查	
		03036005	磁性功能材料及应用	40	2	2	考试/考查	
		03036006	近代电介质理论	40	2	2	考试/考查	
		03036011	低温共烧陶瓷技术(LTCC)工艺学	20	1	2	考试/考查	
非	专业	03036012	材料分子结构分析	40	2	2	考试/考查	
学位	选修课	03036013	能量转换与储存材料	40	2	1	考试/考查	
选		03037001	材料分析理论与方法	60	3	1	考试/考查	
修		20006022	薄膜材料及技术	40	2	1	考试/考查	
课		20006023	固体理论	40	2	2	考试/考查	
		20006028	纳米材料及纳米结构	40	2	2	考试/考查	

		16005011	自然辨证法概论	18	1	2	考查	二选
		16005012	马克思主义与社会科学方法论	18	1	2	考查	_
	其他 选修课		实验课程					
	,0,0		前沿知识讲座					
			跨专业领域或跨学科相关课程					
		03016003	集成电路基础实验	20	1	2		
		03036010	电子材料实验	20	1	1/2		
		03046005	有机功能材料合成技术	40	2	2		详见
	实践教	03415001	半导体功率器件与智能功率 IC 实验	20	1	2		第
	学环节	03415002	电子薄膜实验	20	1	1/2		"六 "点
			基地专业实践					说明
		00405XXX	实践教学环节					
		其它要求	工程/项目设计、知名企业认证考试 等					
业	必修环节		详见第"六"点说明					
	6 W 7.1 1. "	AT 1 D ±4 41	固体电子学导论					
	等学科专业 补修本科		电介质物理		不计	学分		
			磁性物理					

六、实践教学环节和必修环节

(一)实践教学环节:这是专业学位研究生培养过程中重要的特色培养环节,实践教学可采用集中实践与分段实践相结合的方式进行。可通过实践教学课程、基地实践、工程/项目设计、认证考试等方式完成,其中实践教学课程、基地实践为必修项目。

实践教学课程主要指突出实践训练的实验课程,全校可通选,完成者取得相应学分。

基地实践为 2-4 个学分,按照实践时间 1-3 个月、3-6 个月、6-12 个月及以上作为实践时间单位,分别认定为 2 学分、3 学分和 4 学分。要求提交实践总结报告,实践基地(单位)就学生提交的报告给予相关支撑书面材料证明,根据实际实践时间,经导师审核通过,可获得相应学分。

进行工程/项目设计者,导师负责审核把关,通过者可获得1个学分。

知名企业认证考试:通过由研究生院认定的知名企业的认证考试,并获得证书者,可获得相应学分。

- (二)必修环节包含五个部分,要求研究生分别完成以下内容:
- 1. 素质教育公选课(课程编号: 00005XXX): 重点加强研究生综合素质教育,研究生可选修 1门,考核通过后获 1 个学分。
 - 2. 教学实践、创新创业与社会实践可以二选一,完成后获得相应学分。
- (1) 教学实践(课程编号: 00006001, 学时 40): 主要是面向本科生的教学辅导工作,如在导师或任课教师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等,工作量不少于 40

学时。由导师或任课教师给出评语,学院给予书面证明,报学生所在学院备案。完成者获得1学分。

(2) 创新创业与社会实践(课程编号: 00006002): 创新创业与社会实践学分认定范围主要包含五大类,即: 竞赛获奖、知识产权、科技成果转化、自主创业、社会实践等。研究生完成五类中任意一种类别,均可获得相应学分。具体界定如下:

竞赛获奖:指研究生参加由政府教育行政主管部门、专业学术团体、专业教学指导委员会组织 主办的国际、国家级学术科技类、创新创业类、文化艺术体育类等竞赛并获得省部级及以上奖项可 获得1个学分。

知识产权:包括发明专利、实用新型专利等,如外观设计专利、计算机软件著作权、集成电路 布图专有权等。完成后可申请1个学分。

科技成果转化:指研究生的专利以实施许可、技术转让或技术入股方式进行技术转移等。完成 后可申请 1 个学分。

自主创业:指研究生在校学习期间自主创建公司(应与所学专业相关),完成公司登记注册并顺利运营。完成后可申请1个学分。

社会实践:主要指研究生运用所学知识到地方政府、科研院所、企事业单位等开展基层挂职及调研、公益支教、扶贫服务、技术合作等实践项目。完成后根据要求提交总结或报告,并附相关证明材料,报所在学院备案。社会实践项目不得与联合培养基地专业实践项目重复。完成后可获得1个学分。

- 3. 学术活动(课程编号: 00006003, 1 个学分): 为了拓宽研究生的知识面,规定硕士生在校期间必须参加十次以上校内外学术活动,有举办学术单位的公章为依据,报学生所在学院备案,完成者获得1学分。
- 4. 人文教育与学术交流(课程编号: XX66XXXX): 硕士研究生在校期间必须参加每年 6 月举办的"人文教育与学术交流月"活动。参加讲座两次以上,有举办学术单位的公章为依据,提交学习报告,导师审核签字,计入学术活动;完成人文教育与学术交流课程至少 1 门,完成者获得相应必修环节学分。
- 5. 论文开题报告及文献阅读综述(课程编号: 00006009): 指研究生在学位论文开题之前,必须阅读本学科前沿国内外文献 20 篇以上,其中外文文献 10 篇以上,写出 4000 字左右的文献综述报告,附上不少于 1000 字的英文摘要;综述报告应提出值得研究和解决的学术或技术问题,并在此基础上完成相应的开题报告,完成者获得 1 学分。

七、学位论文

(一)硕士学位论文的基本要求

1. 选题要求

选题应直接来源于生产实际或具有明确工程背景与应用价值,具体可以在以下几个方面选取:

- (1) 材料工程领域新工艺、新技术或新产品等研发项目。
- (2) 新材料组成、合成、组织、结构、制备工艺、性能检测等预研或研究项目。
- (3) 原有材料改性、新用途、新特性的开发项目。
- (4) 材料工程中的技术攻关、技术改造、技术推广与应用,以及材料工程设计与实施。
- (5) 在有关材料领域中的引进、消化、吸收和应用国外先进技术项目。
- (6) 其他直接来源于材料生产实际或具有明确工程背景与应用价值的课题。
- 2. 形式和内容要求

学位论文可采用的形式有新材料研发、材料与工艺设计和材料应用研究等。

- (1)对于新材料、新工艺、新技术、新产品的研发项目,一般要求给出材料的成分分析、组织结构、材料性能和工程应用价值评价,给出生产工艺过程及生产设备。
- (2)对于材料或产品原生产工艺和设备技术改造项目,一般要求给出原技术方案评述、技术改造的难点和关键技术、新技术方案的特点和改造后的技术水平、经济和社会效益分析。
- (3)对于原有的材料改性和工艺设计项目,一般要求给出原材料的组织结构和特性分析、改性 后的组织结构的变化、特性变化规律,改性工艺原理及设备要求。
- (4)对于国外引进技术的吸收和消化等材料应用研究项目,一般要求给出引进技术及设备的特点分析、设备和技术功能的充分开发和利用。国外技术和设备的国产化进程或设想,绘出国产化关键技术所在和应采取的技术方案等。

3. 水平要求

- (1) 技术先进,有一定难度。
- (2) 内容充实,有一定工作量。
- (3) 综合运用基础理论、专业知识与科学方法,解决了工程实际问题。
- (4)解决工程实际问题有新思想、新方法或新进展,创造了一定的经济效益或社会效益。
- (5) 论文格式规范,条理清楚,表达准确,数据可靠,图标清晰,实事求是地提出结论。
- (6) 社会评价较好(已在公开刊物发表论文、申请专利、项目获奖、通过鉴定或应用于工程实际等)。

(二)硕士学位论文的工作

硕士学位论文的选题应对科技和社会发展有一定的价值。硕士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告

- (1) 开题报告时间。硕士生在确定选题,阅读大量文献的基础上,应在入学的第三学期末之前, 最迟应在第四学期末之前完成开题报告。
- (2) 开题报告方式。开题报告应以报告会的形式,在教(科)研室或以上范围公开举行;开题报告会须有本学科及相近学科3位副教授或相当专业技术职称以上的专家组成考评组,考评组以校内专家为主,至少应有一位来自相关行(企)业或工程部门的专家。考评组对研究生开题作出考评意见。
- (3) 开题报告内容。依据《开题报告表》的要求,做开题报告。在开题报告会后,及时完成《开题报告表》,在学院审核后,由研究生科保存,以备检查。
- (4) 若开题报告没能通过,在导师的指导下 3 个月后才能申请重新开题。两次开题报告不过者,应终止硕士生学业。
 - (5) 因正当原因改变选题,须按上述要求重做开题报告。
 - (6) 论文开题通过1年后方能申请学位论文答辩。

2. 论文工作

硕士生应在校内外双导师指导下按计划按时完成学位论文工作。

论文工作的时间应不少于1年,论文工作期间应每周一次向导师汇报研究进展;研究生到校外单位做学位论文,要经校内导师、学院批准,并保证每月一次向导师汇报研究进展,按时完成相应工作。

3. 学术论文发表要求

硕士研究生在申请硕士学位论文答辩前,必须满足如下"条件一"或"条件二"之任意一条要求,才能进行硕士论文答辩。

条件一:

以第一作者身份,并以电子科技大学名义,发表(或已录用)一篇 SCI 文章。

条件二:

应在公开出版的国内外学术刊物或国内外学术会议论文集上以第一作者身份,并以电子科技大学名义,发表(或已录用)1篇反映本人研究工作的学术论文全文,且申请一项发明专利(获得申请号或授权)。

上述规定中的"第一作者"是指排名第一,如老师排名第一,学生排名第二,排名第二的学生视为第一。

4、学位论文撰写

硕士生在导师指导下,按照《研究生学位论文(研究报告)撰写格式规范》的要求,独立完成学位论文,导师应对硕士生学位论文严格审查,把好质量关。

(三)学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行,其中评阅、答辩考评组以校内专家为主,但至少应有一位相关行业具有高级职称(或相当水平)的专家。

电子与通信工程领域 全日制工程硕士研究生培养方案

(专业代码:085208)

电子与通信工程领域专业学位研究生的培养,依托了我校"电子科学与技术"和"信息与通信 工程"两个一级国家重点学科,包含了"通信与信息系统"、"信号与信息处理"、"电路与系统"、"电 磁场与微波技术"、"微电子学与固体电子学"和"物理电子学"等学科及相关的综合交叉学科,具 有很强的学术支撑。工程硕士专业学位是与工程领域任职资格相联系的专业学位,它与工学硕士学 位处于同一层次,更注重培养知识的应用以及掌握能解决工程问题的先进技术方法和现代技术手 段, 我校电子与通信工程专业领域汇集了我校5位中国科学院、中国工程院院士,24位长江学者, 55 位教育部"千人计划"学者,10 位国家杰出青年科学基金获得者,6 位国家百千万人才工程入选 者,6位国家自然科学基金优秀青年基金获得者,及一大批博士生导师、教授组成的理论与实践相 结合的高素质的学术队伍,已培养与造就了大批科学研究和工程应用领域的优秀人才。有"电子薄 膜与集成器件"、"通信抗干扰技术"、"大功率微波电真空器件技术"和"极高频复杂系统""OLED 工艺技术国家地方联合工程实验室"等国家级重点实验室,以及"国家电磁辐射控制材料"国家工 程中心、教育部新型微波探测技术工程中心、教育部传感工程技术重点实验室、光纤传感与通信教 育部重点实验室、四川省"通信系统中的信号处理"重点实验室和"雷达探测与成像"重点实验室、 "新型传感器"教育部重点实验室、"四川省显示科学与技术"实验室、"四川省信息光电子技术与 器件重点实验室"等多个省部级重点实验室;与国际著名公司联合成立的"电子科技大学-TI DSP 开发及培训中心"、"电子科大-ALTERA EDA/SOPC 联合实验室"、"电子科技大学-Mentor Graphics EDA/SoC 设计及培训中心"、电子科技大学-ARM 嵌入式系统/SoC 设计创新联合实验室、英特尔 VLSI 实验室等一批实验条件较为先进的实验室群,还有大批高档的科学实验仪器设备、计算机工作 站、设计软件及一流的研究平台和环境。本学科在高层次人才培养及学科领域内多方面的科学研究 工作取得了丰硕成果。

一、培养目标

电子与通信工程领域专业学位研究生学位获得者应掌握通信科学、信息科学的基础理论与技巧以及掌握计算机科学、控制科学、物理电子学、光电子学、信息材料、地球科学等相关学科的理论与技术,掌握解决工程问题的先进技术方法和现代技术手段;具有在移动通信、光纤通信、信号与信息处理、集成电路设计与制造、电子元器件、电磁场与微波技术、地球信息、现代测绘、遥感、地理信息系统、地球物理、高性能地学等领域从事管理、研究、维护和开发的能力;具有创新意识和独立担负工程技术或工程管理的能力;同时也要求学位获得者较为熟练地掌握一门外国语,成为应用型、复合型、创新性的高层次工程技术和工程管理人才。

电子与通信工程领域专业学位研究生学位获得者应政治合格、热爱祖国、热爱人民、献身伟大祖国的社会主义现代化建设事业。

二、研究方向

- 1. 无线与移动通信
- 3. 电磁场工程与微波技术
- 5. 微电子电路与集成系统技术
- 2. 宽带通信及网络
- 4. 信息感知技术
- 6. 航空航天测控通信与信息工程

- 7. 信息材料与器件技术
- 8. 物理电子学
- 9. 地球信息科学与技术
- 10. 电子系统综合与集成

11. 光电技术

三、培养方式和学习年限

采用课程学习、实践教学和学位论文相结合的培养方式。通过课程学习、实践教学和论文研究 工作,掌握某一特定职业领域相关理论知识,培养解决实际问题的能力。硕士研究生的培养采用校 内外双导师共同指导的方式。

研究生学制为三年。提前完成硕士学业者,可申请提前半年毕业;若因客观原因不能按时完成 学业者,可申请适当延长学习年限,但最长学习年限不超过四年。

四、学分与课程学习基本要求

总学分要求不低于 36 学分,其中课程总学分不低于 25 学分,实践教学环节不低于 6 学分,必修环节不低于 5 学分;课程学分中,学位课要求不低于 16 个学分,基础课至少选修 1 门。公共基础课必修,多选一课程至少选修 1 门。

允许在导师指导下、在相近学科门类或专业领域之间选修 3~4 门学位课作为本专业的学位课。 针对实践教学环节中开出的实验课程,可根据需要、进行跨学院跨专业选修。

学位课学分可代替非学位课学分,但非学位课不能代替学位课。学位课必须考试,以百分制评定成绩。非学位选修课考核包含考试和考查两种形式,考试百分制评定成绩,考查以"通过"或"不通过"评定成绩。

研究生导师负责指导研究生制定个人培养计划和选课。导师指导研究生自学与研究课题有关的知识,并列入个人培养计划,但不计学分。校外导师参与课程学习、实践教学环节的指导工作。

五、课程设置

电子与通信工程领域专业学位研究生课程设置

课程划分为学位课、非学位课、实践教学环节、必修环节四部分。

	类别	课程编号	课程名称	学时	学分	开课 学期	考核 方式	备注
		13005014	硕士研究生学位英语	90	3	1/2	考试	
	公共	16005004	中国特色社会主义理论与实践研究	36	2	1	考试	
	基础课	11005001	工程伦理与学术道德	20	1	1/2	考试	二选
334		11005002	知识产权与信息检索	20	1	1/2	考试	_
学位		10005001	矩阵理论	60	3	1	考试	
课		10005004	数学物理方程与特殊函数	60	3	1	考试	
	基础课	20005001	随机过程及应用	60	3	1	考试	
	垄 仙床	20006003	最优化理论与应用	60	3	1	考试	
	-	10006003	图论及应用	60	3	2	考试	
		10006002	数值分析	60	3	1	考试	

		20006002	高等电磁场理论	50	2.5	1	考试	
		04036005	微波电路与系统	40	2	1	考试	
		20006019	导波场论	50	2.5	2	考试	
		04026002	微波电子学	50	2.5	2	考试	
		02046009	现代数字信号处理理论及算法	60	3	2	考试	
		02045006	信息论与编码	40	2	2	考试	
		01016009	ASIC 设计	40	2	2	考试	
		01016018	高级计算机网络(1)原理与体系结构	40	2	1/2	考试	
		01017010	光纤通信系统与网络	40	2	1	考试	
		01025010	数字通信	40	2	2	考试	
学		20006001	信号检测与估计	40	2	1	考试	
位	专业	26016002	现代无线与移动通信系统	40	2	2	考试	
课	基础课	02057014	射频集成电路	60	3	2	考试	
		02057003	现代电路理论及应用	40	2	1	考试	
		03017001	半导体器件物理	60	3	1	考试	
		05015005	敏感材料与传感器	40	2	1	考试	
		05016029	光电探测技术	40 2	1	考试		
		20005007	信息材料基础	50	2.5	1	考试	
		18015001	现代测绘科学与技术	40	2	1	考试	
		02035001	近代天线理论	40	2	2	考试	
		18015002	遥感应用原理与方法	40	2	1	考试	
		05015003	半导体光电子学	40	2	2	考试	
		05015010	光电信息检测	40	2	2	考试	
		01016004	无线传感器网络	40	2	2		
		01016016	MIMO-OFDM 基带接收机设计与实现	40	2	2		
		26016001	宽带无线通信技术	40	2	1		
非		26016005	DSP 算法实现技术与架构研究	40	2	2		
学		26016007	空间信息传输与处理	40	2	1		
位	专业	26016009	先进计算机网络技术	40	2	1		
选	选修课	26016010	随机过程与矩阵在无线通信中的应用	40	2	1		
修		26036002	安全通信 I	20	1	2		
课		01016011	无线互联网	40	2	1		
		01016013	网络交换设备架构及设计实践	40	2	2		
		01016017	互联网安全	40	2	1		
		01016019	高级计算机网络(2)协议与技术	40	2	2		

		01025007	多源信息融合理论及应用	40	2	2	
		02035003	近代微波测量	40	2	2	
		02037001	非均匀介质中的场与波	40	2	2	
		02037001	电磁理论中的并矢格林函数	40	2	2	
		02037003	瞬变电磁场	40	2	1	
		02057004	电磁兼容原理与应用	40	2	2	
		20006016	现代通信系统中的微波电路	40	2	2	
		02036001	近代微波网络理论及应用	40	2	1	
			MEMS Technology for RF and Sensing	10		_	
		02037007	Applications	20	1	1	
		02026001	微波仿真软件	40	2	1	
		20006005	计算电磁学	50	2.5	2	
		20006020	毫米波理论与技术	40	2	2	
		04036003	微波工程 CAD	40	2	2	
		04036004	天线与电波传播	50	2.5	1	
		04037004	超宽带电磁学及其应用	40	2	1	
非	专业 020	02035001	近代天线理论	40	2	2	
学		02035002	无线系统的微波与射频设计	40	2	1	
位		02057011	非线性微波电路与系统	40	2	1	
选	选修课	02066010	嵌入式系统设计技术	40	2	2	
修课		20006003	最优化理论与应用	50	2.5	2	
床		20006015	图像处理及应用	40	2	1	
		20007001	模式识别	40	2	2	
		02045002	软件无线电技术	40	2	2	
		02045003	数字视频技术	40	2	2	
		02045010	卫星导航原理与应用	40	2	1	
		02046010	模糊逻辑	40	2	2	
		02066003	基于 FPGA 的数字系统设计	40	2	2	
		02066009	无线传感器网络信号处理	40	2	1	
		02066002	雷达与电子对抗系统	40	2	1	
		01025006	电子系统的射频与天线	40	2	1	
		01885001	单片射频/微波集成电路技术与设计	40	2	2	
		26025001	电子设计自动化	40	2	2	
		04046005	光通信与光电系统	40	2	1	
		04047001	亚波长光学	40	2	2	
		04047002	光学系统设计	40	2	1	
		04047003	微电子结构光学测试技术	40	2	1	

		03016001	VHDL 语言与数字集成电路设计	40	2	2	
		03016002	集成电路封装与可靠性	40	2	1	
		03017002	微细加工与 MEMS 技术	40	2	1	
		03017007	通信集成电路	40	2		
		03016003	集成电路基础实验	20	1		
		03415001	半导体功率器件与智能功率 IC 实验	20	1		
		02056005	现代频率综合技术	40	2	2	
		02057013	科学研究方法	20	1	2	
		02046009	现代数字信号处理理论及算法	60	3	2	
		02056002	现代网络理论与综合	40	2	1	
		02057005	VLSI 电路和系统设计	40	2	1	
		02057006	RF MEMS 及系统集成(英文)	40	2	2	
		02057008	软硬件协同设计	40	2	2	
		03026003	无源集成技术与器件	40	2		
		03036008	微波磁性器件	40	2	2	
		03036011	低温共烧陶瓷技术(LTCC)工艺学	20	1		
非		20006022	薄膜材料及技术	40	2	1	
学	a . II.	20005006	材料表面与界面物理	50	2.5	1	
	記 修课	03037001	材料分析理论与方法	60	3	1	
修	廖床	03036010	电子材料实验	20	1	1/2	
课		03415002	电子薄膜实验	20	1	1/2	
710		04025004	现代微波测量技术	30	1.5	1	
		04026006	电磁场有限元方法	40	2	2	
		04026007	太赫兹科学技术导论	30	1.5	2	
		04027002	电子回旋脉塞理论与技术	40	2	2	
		04027003	强流电子光学	40	2	2	
		04027006	硅基射频集成电路设计	40	2	2	
		04027007	生物医学成像	40	2	2	
		04027008	光学成像中的数值方法	40	2	1	
		04027009	量子与分子动力学模拟计算	40	2	1	
		04057002	粒子模拟理论与方法	30	1.5	1	
		18016001	遥感物理	40	2	1	
		18016002	微波遥感	40	2	2	
		18016003	遥感图像处理	40	2	2	
	1	18016005	空间数据库	30	1.5	1	
		18016006	生态信息学	40	2	2	
		02045010	GPS 理论与应用	40	2	1	

	1	ı	[N = N = N = N = N = N = N = N = N = N		I	1		, i
		20006001	信号检测与估计	40	2	1		
		22017002	先进计算理论及技术	40	2	2		
		22017003	数据分析与数据挖掘	40	2	1		
		04036005	微波电路与系统	40	2	2		
		24416019	微系统封装技术	40	2	2		
		02055003	电磁兼容原理与应用	40	2	2		
		24416020	集成电路物理设计	40	2	1		
		22416002	信息系统分析与设计	40	2	1		
	专业	22417002	逆向工程	20	1	2		
	选修课	06017001	中间件技术	20	1	1		
-1L-	起廖怀	06017003	互联网程序设计	20	1	2		
非学		06017007	分布式系统	40	2	1		
位		20055004	光波导理论与技术	40	2	1		
选选		05016032	光纤通信技术	40	2	2		
修		05016019	大气光学和空间光信息系统	40	2	1		
课		05017009	微传感器原理与技术	40	2	2		
		19016001	现代导航与制导技术	40	2	1		
		19026001	现代测控通信技术	40	2	2		
		19026008	数据融合理论及应用	40	2	2		
		16005011	自然辨证法概论	18	1	2	考查	公共选
		16005012	马克思主义与社会科学方法论	18	1	2	考查	修二选
	其他		实验课程					
	选修课	04887001	前言知识讲座	20	1	1/2		
		26016011	通信学科前沿知识专题讲	20	1			
		19005001	创新能力培养与实践	20	1	1		
			跨专业领域或跨学科相关课程					
	•		基地专业实践					
		00405XXX	实践教学课程					
		26415001	宽带 OFDM 传输接收机系统 EDA 设计	20	1	2		
2	实践教	26415002	通信抗干扰工程与实践	20	1	1		1
	学环节	01416001	网络仿真	20	1	2		1
		01416002	网络系统的通信软件设计	20	1	1		1
		01016010	软件无线电技术设计与实践	20	1	2		
		01416003	DSP 设计与实践	20	1	1		
		01416005	通信射频电路与系统仿真实验	20	1	2		1
		i .	ı		l	<u> </u>	I	ı

	01416006	并行处理与高性能计算实验	20	1	2	
	01416007	SDN 基础概念与实践	20	1	2	
	01416008	物联网片上系统设计与实践	20	1	2	
	01416004	通信集成电路设计与实践	20	1	2	
	04415004	数字微波通信创新实验	20	1	1	
	02035004	近代微波测量 (实验)	20	1	2	
	04415005	微波通信专业学位综合实验 1	20	1	1/2	
	02056007	微波电路与系统仿真实验	20	1	1	
	04415006	微波通信专业学位综合实验 2	20	1	1/2	
	02046007	电子系统仿真理论与技术	30	1.5	2	
	02415002	软件无线电系统的设计与验证	30	1.5	2	
	02046004	数字信号处理实现技术	30	1.5	2	
	02046008	线性调频脉冲压缩雷达系统设计与验证	20	1	1	
	02415001	雷达信号产生与处理的设计与验证	30	1.5	2	
	02415003	信号最佳接收检测的设计与验证	30	1.5	2	
	02415004	自适应波束形成	30	1.5	1	
	04415002	光信息处理综合实验	20	1	1	
实践教	03016003	集成电路基础实验	20	1	2	
学环节	03415001	半导体功率器件与智能功率 IC 实验	20	1	2	
	03036010	电子材料实验	20	1	1/2	
	03415002	电子薄膜实验	20	1	1/2	
	04415001	物电电子学实验	20	1	1	
	04415007	微波测量试验	20	1	1	
	04415008	真空电子器件 CAD 实验	20	1	1	
	18416001	地理信息应用系统设计与开发	40	2	2	
	18416002	地理信息采集与处理	40	2	1	
	18416003	遥感地面数据采集与实验方法	40	2	2	
	18416004	数据可视化设计与开发	40	2	1	
	18416005	基于 FPGA 的高性能计算与图像处理	30	1.5	1/2	
	05416005	声光无损检测	20	1	2	
	05416007	新型传感器设计	20	1	2	
	05416009	光纤通信技术实验	40	2	2	
	05416011	半导体照明器件设计、封装与测试	20	1	2	
	19016007	直流无刷电机控制系统设计与开发	20	1	1/2	
	19016008	实用嵌入式应用系统设计与实现	20	1	1/2	
	19416001	网络协议实践	30	1.5	1/2	

	19416003	飞行器设计分析与仿真实现	20	1	1/2	
	19416004	基于 JAVA 的安卓 APP 设计与开发	20	1	1/2	1
	19416005	基于 SCADE 的飞行器 GNC 系统建模	30	1.5	1/2	
	19416006	DSP 最小系统设计与应用实践	20	1	2	•
	19416002	ADS_B 实验	20	1	1	•
	+ 4. = 4	工程/项目设计、工艺培训、基地实训、				
	其他要求	知名企业认证考试等				
必修环节		详见第"六"点说明				
		存具上系统 通信原理 计算机通信				无线与
		信号与系统、通信原理、计算机通信网				移动通
		P/9				信
		 信号与系统、通信原理、计算机通信				宽带通
		网				信及网
						络
						电磁场
		微波技术基础、电磁场与电磁波、天				工程与
		线原理与设计、微波固态电路 				微波技
						术 信息感
		数字信号处理				知技术
						微电子
	1=1 N 14 1	 光电子技术、光学、磁性物理				电路与
跨学科专业	- · · · · -	电介质物理、半导体物理		不计	学分	集成系
补修本科	该心课程					统技术
		放射 加 田 中人毛 加 田				信息材
		磁性物理、电介质物理、 半导体物理				料与器
		十寸体彻理				件技术
		 电动力学、信号与系统				物理电
		1 337 3 1 In 3 33151				子学
						地球信
		空间信息导论、遥感原理				息科学
						与技术
						航空航 天测控
		信号与系统、通信原理、				大测控 通信与
		旧コラ水池、四日原生、				信息工
						程
						7.12

六、实践教学环节和必修环节

(一)实践教学环节:这是专业学位研究生培养过程中重要的特色培养环节,实践教学可采用集中实践与分段实践相结合的方式进行。可通过实践教学课程、基地实践、工程/项目设计、认证考试等方式完成,其中实践教学课程、基地实践为必修项目。

实践教学课程主要指突出实践训练的实验课程,全校可通选,完成者取得相应学分。

基地实践为 2-4 个学分,按照实践时间 1-3 个月、3-6 个月、6-12 个月及以上作为实践时间单位,分别认定为 2 学分、3 学分和 4 学分。要求提交实践总结报告,实践基地(单位)就学生提交的报告给予相关支撑书面材料证明,根据实际实践时间,经导师审核通过,可获得相应学分。

进行工程/项目设计者,导师负责审核把关,通过者可获得1个学分。

知名企业认证考试:通过由研究生院认定的知名企业的认证考试,并获得证书者,可获得相应学分。

- (二)必修环节包含五个部分,要求研究生分别完成以下内容:
- 1. 素质教育公选课(课程编号:00005XXX): 重点加强研究生综合素质教育,研究生可选修 1门,考核通过后获 1 个学分。
 - 2. 教学实践、创新创业与社会实践可以二选一,完成后获得相应学分。
- (1) 教学实践(课程编号: 00006001, 学时 40): 主要是面向本科生的教学辅导工作,如在导师或任课教师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等,工作量不少于 40 学时。由导师或任课教师给出评语,学院给予书面证明,报学生所在学院备案。完成者获得 1 学分。
- (2) 创新创业与社会实践(课程编号: 00006002): 创新创业与社会实践学分认定范围主要包含五大类,即: 竞赛获奖、知识产权、科技成果转化、自主创业、社会实践等。研究生完成五类中任意一种类别,均可获得相应学分。具体界定如下:

竞赛获奖:指研究生参加由政府教育行政主管部门、专业学术团体、专业教学指导委员会组织 主办的国际、国家级学术科技类、创新创业类、文化艺术体育类等竞赛并获得省部级及以上奖项可 获得1个学分。

知识产权:包括发明专利、实用新型专利等,如外观设计专利、计算机软件著作权、集成电路 布图专有权等。完成后可申请1个学分。

科技成果转化:指研究生的专利以实施许可、技术转让或技术入股方式进行技术转移等。完成 后可申请1个学分。

自主创业:指研究生在校学习期间自主创建公司(应与所学专业相关),完成公司登记注册并顺利运营。完成后可申请1个学分。

社会实践:主要指研究生运用所学知识到地方政府、科研院所、企事业单位等开展基层挂职及调研、公益支教、扶贫服务、技术合作等实践项目。完成后根据要求提交总结或报告,并附相关证明材料,报所在学院备案。社会实践项目不得与联合培养基地专业实践项目重复。完成后可获得1个学分。

- 3. 学术活动(课程编号: 00006003, 1 个学分): 为了拓宽研究生的知识面,规定硕士生在校期间必须参加十次以上校内外学术活动,有举办学术单位的公章为依据,报学生所在学院备案,完成者获得1学分。
- 4. 人文教育与学术交流(课程编号: XX66XXXX): 硕士研究生在校期间必须参加每年 6 月举办的"人文教育与学术交流月"活动。参加讲座两次以上,有举办学术单位的公章为依据,提交学习报告,导师审核签字,计入学术活动;完成人文教育与学术交流课程至少 1 门,完成者获得相

应必修环节学分。

5. 论文开题报告及文献阅读综述(课程编号: 00006009): 指研究生在学位论文开题之前,必须阅读本学科前沿国内外文献 20 篇以上,其中外文文献 10 篇以上,写出 4000 字左右的文献综述报告,附上不少于 1000 字的英文摘要;综述报告应提出值得研究和解决的学术或技术问题,并在此基础上完成相应的开题报告,完成者获得 1 学分。

七、学位论文

(一)硕士学位论文的基本要求

1. 选题要求

论文选题应源于生产实际,或具有明确工程背景与应用价值,具有一定技术难度,能体现所学知识的综合运用,有足够工作量;论文研究应体现作者的知识更新及在具体工程应用中的新意,论文研究结果能对行业,特别是所在单位的技术进步起到促进作用。具体可以在以下几个方面选取:

- (1) 技术攻关, 技术改造, 技术推广与应用;
- (2) 新产品、新设计、新工艺、新材料、新应用软件的研制与开发;
- (3) 引进、消化、吸收和应用国外先进技术项目;
- (4) 基础性应用研究或预研项目;
- (5) 工程设计与实施项目;
- (6) 较为完整的工程技术或工程管理项目的规划或研究;
- (7) 企业的标准化项目。

2. 形式要求

电子与通信工程领域工程硕士专业学位的论文形式可以多样化,既可以是研究类学位论文,如 应用研究论文,也可以是设计类和产品开发论文,如产品研发、工程设计等,还可以是软科学论文, 如调查研究报告、工程管理论文等。

产品研发:来源于电子与通信工程领域生产实际的新产品研发、关键部件研发、以及对国内外先进产品的引进消化再研发,包括了各种软、硬件产品的研发。内容包括绪论、研发理论及分析、实施与性能测试及总结等部分。

工程设计:是指综合运用电子与通信工程理论、科学方法、专业知识与技术手段、技术经济、人文和环保知识,对具有较高技术含量的工程项目、大型设备、装备及其工艺等问题从事的设计。设计方案科学合理、数据准确,符合国家、行业标准和规范,同时符合技术经济、环保和法律要求。内容包括绪论、设计报告、总结及必要的附件;可以是工程图纸、工程技术方案、工艺方案等,可以用文字、图纸、表格、模型等表述。

应用研究:是指直接来源于电子与通信工程实际问题或具有明确的电子与通信工程应用背景,综合运用基础理论与专业知识、科学方法与技术手段开展应用性研究。内容包括绪论、研究与分析、应用和检验及总结等部分。

工程/项目管理:项目管理是指电子与通信工程领域一次性大型复杂工程任务的管理,研究的问题可以涉及项目生命周期的各个阶段或者项目管理的各个方面,也可以是企事业项目化管理、项目组合管理或多项目管理问题。工程管理是指以自然科学和电子与通信工程技术为基础的工程任务的管理,可以研究电子与通信工程的各职能管理问题,也可以涉及电子与通信工程各方面的技术管理问题等。要求本领域问题和项目管理中存在的实际问题开展研究,对国内外解决该类问题的具有代表性的管理方法及相关领域的方法进行分析、选择或必要改进。对该类问题的解决方案进行设计,并对该解决方案进行案例分析和验证,或进行有效性和可行性分析。

调研报告:是指对电子与通信工程及相关领域的工程和技术命题进行调研,通过调研发现本质,找出规律、给出结论,并针对存在或可能存在的问题提出建议或解决方案。包括绪论、调研方法、资料和数据分析、对策或建议及总结等部分。既要对被调研对象的国内外现状及发展趋势进行分析,又要调研该命题的内在因素及外在因素,并对其进行深入剖析。

3. 水平要求

电子与通信工程领域工程硕士专业学位的学位论文的水平要求体现在以下方面:

- (1) 学位论文工作有一定的技术难度和深度,论文成果具有一定的先进性和实用性;
- (2) 学位论文工作应在导师指导下独立完成,论文工作量饱满;
- (3) 学位论文中的文献综述应对选题所涉及的工程技术问题或研究课题的国内外状况有清晰的描述与分析;
- (4) 学位论文的正文应综合应用基础理论、科学方法、专业知识和技术手段对所解决的科研问题或工程实际问题进行分析研究,并能在某些方面提出独立见解。

学位论文撰写要求概念清晰,逻辑严谨,结构合理,层次分明,文字通畅、图表清晰、概念清楚、数据可靠、计算正确。

(二)硕士学位论文工作

硕士生应在导师指导下确定选题和开展学位论文工作,校外导师参与论文环节的指导工作。

1. 开题报告

- (1) 开题报告时间。硕士生在确定选题,阅读大量文献的基础上,应在入学的第三学期末之前, 最迟应在第四学期末之前完成开题报告。
- (2) 开题报告方式。开题报告应以报告会的形式,在教(科)研室或以上范围公开举行; 开题报告会须有本学科及相近学科 3 位副教授或相当专业技术职称以上的专家组成考评组,考评组以校内专家为主,至少应有一位来自相关行(企)业或工程部门的专家。考评组对研究生开题作出考评意见。
- (3) 开题报告内容。依据《开题报告表》的要求,做开题报告。在开题报告会后,及时完成《开题报告表》,交学院研究生科保存,以备检查。
- (4) 若开题报告没能通过,在导师的指导下3个月后才能申请重新开题。2次开题报告不过者,应终止硕士生的学业。
 - (5) 因正当原因改变选题,须按上述要求重做开题报告。
 - (6) 论文开题通过1年后方能申请学位论文答辩。

2. 论文工作

硕士生应在校内外双导师指导下按计划按时完成学位论文工作。

论文工作的时间应不少于1年,论文工作期间应每周一次向导师汇报研究进展,研究生到校外单位做学位论文,要经校内导师、学院批准,并保证每月一次向导师汇报研究进展,按时完成相应工作。

3. 论文核心成果的考评

物理电子学院硕士研究生在申请硕士学位论文答辩前,可根据论文选题的具体内容和完成情况,至少应满足以下条件之一,才可申请答辩。

- (1)以第一作者身份,并以电子科技大学名义,在公开出版的期刊或全国性学术会议上录用(录用通知)或发表一篇学术论文:
 - (2)获得(申请)一项专利(专利申请受理通知书),排名第一或第二(导师为第一)。 微电子与固体电子学院硕士研究生在申请硕士学位论文答辩前,必须满足以下条件之一,才可

申请答辩。

- (1) 以第一作者身份,并以电子科技大学名义,发表(或已录用)一篇 SCI 文章。
- (2) 应在公开出版的国内外学术刊物或国内外学术会议论文集上以第一作者身份,并以电子科技大学名义,发表(或已录用)1篇反映本人研究工作的学术论文全文,且申请一项发明专利(获得申请号或授权)。

上述规定中的"第一作者"是指排名第一,如老师排名第一,学生排名第二,排名第二的学生视为第一。

4. 学位论文的撰写

硕士生在导师指导下,按照《研究生学位论文(研究报告)撰写格式规范》的要求,独立完成学位论文,导师应对硕士生学位论文严格审查,把好质量关。

(三)学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行,其中评阅、答辩考评组以校内专家为主,但至少应有一位相关行业具有高级职称(或相当水平)的专家。

集成电路工程领域 全日制工程硕士研究生培养方案

(专业代码:085209)

集成电路产业是信息技术产业的核心,是支撑经济社会发展和保障国家安全的战略性、基础性 和先导性产业,集成电路工程是我国二十一世纪重点发展的学科之一。主要研究半导体物理与器件, 电子材料与固体电子元器件,超大规模集成电路的设计与制造技术,系统芯片技术,电路组件与系 统,微机电系统等。它涉及到微电子学与固体电子学的理论,信息的获取、存储、处理与控制,并 且和电路与系统、通信与信息系统、信号与信息处理、电子工程学、物理电子学、电磁场与微波技 术、电子材料科学与工程、自动控制学以及计算机科学与技术等多个学科有着密切的联系。这一学 科的发展非常迅速,目前已进入了以超大规模集成电路为主要标志的发展阶段。其主要发展方向是 超深亚微米物理与技术,集成电路与系统技术,新型固体电子器件,纳米电子器件以及微机电系统。

我校本学科是国家重点学科,有一支以科学院院士、长江学者特聘教授、博士生导师、教授、 副教授以及一批青年博士、硕士组成的学术队伍,在新型半导体功率器件与新型智能集成电路等方 面研究独具特色,一些工作在国内外享有盛誉。并与国内外相关的学校和研究所有着广泛的联系。

一、培养目标

本学科硕士学位获得者应具有微电子学与固体电子学方面坚实的基础理论和系统的专业知识, 能熟练运用计算机和仪器设备进行实验研究,具有较强的分析问题和解决问题的能力。不仅对本学 科的某一方面有深入的了解,而且在该方面有一定的研究成果。应掌握一门外国语。有严谨求实的 科学态度和工作作风、能胜任科研、教学或产业的技术管理工作。

硕士学位获得者应政治合格,热爱祖国,热爱人民,献身于伟大祖国社会主义建设事业。

二、研究方向

- 1. 新型功率半导体器件与集成电路和系统 2. 大规模集成电路与系统
- 3. 专用集成电路与系统
- 5. 集成电路测试、封装、可靠性技术
- 7. 新型固体器件与应用
- 9. 微细加工与 MEMS 技术

- 4. SOC/SIP 系统芯片技术
- 6. 射频微波、超高速器件与电路
- 8. 固体信息、传感和存储技术及微组装技术

三、培养方式和学习年限

全日制硕士专业学位研究生采用课程学习、实践教学和学位论文相结合的培养方式。通过课程 学习、实践教学和论文研究工作,掌握某一特定职业领域相关理论知识,培养解决实际问题的能力。 硕士研究生的培养采用校内外双导师共同指导的方式。

全日制硕士专业学位研究生学制为三年。提前完成硕士学业者,可申请提前半年毕业; 若因客 观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过四年。

四、学分与课程学习基本要求

总学分要求不低于36学分,其中课程总学分不低于25学分,实践教学环节不低于6学分,必 修环节不低于 5 学分:课程学分中,学位课要求不低于 16 个学分,公共基础课必修,基础课至少

选修1门,多选一课程至少修1门。

允许在导师指导下、在相近学科门类或专业领域之间选修 1~2 门学位课作为本专业的学位课。 针对实践教学环节中开出的实验课程,可根据需要、进行跨学院跨专业选修。

学位课可以代替非学位课,但非学位课不能代替学位课。对于跨学科专业录取的硕士生,要求 补修相应专业本科核心课程至少 2 门,通过导师考核后,才能选修专业课。

研究生导师负责指导研究生制定个人培养计划和选课。导师指导研究生自学与研究课题有关的知识,并列入个人培养计划,但不计学分。校外导师参与课程学习、实践教学环节的指导工作。

五、课程设置

全日制硕士专业学位研究生课程划分为学位课、非学位课、实践教学环节、必修环节四部分。

集成电路工程领域 全日制工程硕士研究生课程设置

	类 别	课程编号	《电路工程视域 至口机工程视》 课程名称	学时	学分	开课 学期	考核方式	备注
学位课	公共 基础课	16005004	中国特色社会主义理论与实践	36	2	1	考试	
		13005014	硕士研究生学位英语	90	3	1/2	考试	
		11005001	工程伦理与学术道德	20	1	1/2	考试	二选
		11005002	知识产权与信息检索	20	1	1/2	考试	_
	基础课	10006002	数值分析	60	3	1	考试	
		20006008	应用数学理论与方法	60	3	2	考试	
	专业 基础课	02057005	VLSI 电路和系统设计	40	2	1	考试	
		03015001	集成电子学	50	2.5	2	考试	
		03017001	半导体器件物理	60	3	1	考试	
		03017008	模拟集成电路分析与设计	50	2.5	1	考试	
	专业 选修课	03016001	VHDL 语言与数字集成电路设计	40	2	2	考试/考查	
		03016002	集成电路的封装测试与可靠性	40	2	1	考试/考查	
		03016005	半导体可靠性工程	30	1.5	1	考试/考查	
		03016007	集成电路可测性设计	30	1.5	2	考试/考查	
		03017002	微细加工与 MEMS 技术	40	2	1	考试/考查	
非		03017003	半导体功率器件与智能功率 IC	40	2	2	考试/考查	
学		03017009	集成电路仿真与自动化设计基础	40	2	1	考试/考查	英文
位选		03017010	高等数字集成电路设计	40	2	2	考试/考查	英文
修		03026001	微波集成电路	40	2	1	考试/考查	
课		20005002	数字信号处理	40	2	1	考试/考查	
	其他 选修课	16005011	自然辨证法概论	18	1	2	考查	二选一
		16005012	马克思主义与社会科学方法论	18	1	2	考查	
			实验课程					
			前沿知识讲座					
			跨专业领域或跨学科相关课程					

	03016003	集成电路基础实验	20	1	2	
	03036010	电子材料实验	20	1	1/2	
	03046005	有机功能材料合成技术	40	2	2	详见
实践教	03415001	半导体功率器件与智能功率 IC 实验	20	1	2	第
学环节	03415002	电子薄膜实验	20	1	1/2	"六" 点说
		基地专业实践				明明
	00405XXX	实践教学环节				.>1
	其他要求	工程/项目设计、知名企业认证考试 等				
必修环节		详见第"六"点说明				
pt W 41 L 11 AT LA + 11		微电子器件				
跨学科专业 补修本科村		微电子集成电路		不计	一学分	
们多种们然也依住		半导体物理				

六、实践教学环节和必修环节

(一)实践教学环节:这是专业学位研究生培养过程中重要的特色培养环节,实践教学可采用集中实践与分段实践相结合的方式进行。可通过实践教学课程、基地实践、工程/项目设计、认证考试等方式完成,其中实践教学课程、基地实践为必修项目。

实践教学课程主要指突出实践训练的实验课程,全校可通选,完成者取得相应学分。

基地实践为 2-4 个学分,按照实践时间 1-3 个月、3-6 个月、6-12 个月及以上作为实践时间单位,分别认定为 2 学分、3 学分和 4 学分。要求提交实践总结报告,实践基地(单位)就学生提交的报告给予相关支撑书面材料证明,根据实际实践时间,经导师审核通过,可获得相应学分。

进行工程/项目设计者,导师负责审核把关,通过者可获得1个学分。

知名企业认证考试:通过由研究生院认定的知名企业的认证考试,并获得证书者,可获得相应学分。

- (二)必修环节包含五个部分,要求研究生分别完成以下内容:
- 1. 素质教育公选课(课程编号: 00005XXX): 重点加强研究生综合素质教育,研究生可选修 1门,考核通过后获 1 个学分。
 - 2. 教学实践、创新创业与社会实践可以二选一,完成后获得相应学分。
- (1) 教学实践(课程编号: 00006001, 学时 40): 主要是面向本科生的教学辅导工作,如在导师或任课教师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等,工作量不少于 40 学时。由导师或任课教师给出评语,学院给予书面证明,报学生所在学院备案。完成者获得 1 学分。
- (2) 创新创业与社会实践(课程编号: 00006002): 创新创业与社会实践学分认定范围主要包含五大类,即: 竞赛获奖、知识产权、科技成果转化、自主创业、社会实践等。研究生完成五类中任意一种类别,均可获得相应学分。具体界定如下:

竞赛获奖:指研究生参加由政府教育行政主管部门、专业学术团体、专业教学指导委员会组织 主办的国际、国家级学术科技类、创新创业类、文化艺术体育类等竞赛并获得省部级及以上奖项可 获得1个学分。

知识产权:包括发明专利、实用新型专利等,如外观设计专利、计算机软件著作权、集成电路

布图专有权等。完成后可申请1个学分。

科技成果转化:指研究生的专利以实施许可、技术转让或技术入股方式进行技术转移等。完成 后可申请1个学分。

自主创业:指研究生在校学习期间自主创建公司(应与所学专业相关),完成公司登记注册并顺利运营。完成后可申请1个学分。

社会实践:主要指研究生运用所学知识到地方政府、科研院所、企事业单位等开展基层挂职及调研、公益支教、扶贫服务、技术合作等实践项目。完成后根据要求提交总结或报告,并附相关证明材料,报所在学院备案。社会实践项目不得与联合培养基地专业实践项目重复。完成后可获得1个学分。

- 3. 学术活动(课程编号: 00006003, 1 个学分): 为了拓宽研究生的知识面,规定硕士生在校期间必须参加十次以上校内外学术活动,有举办学术单位的公章为依据,报学生所在学院备案,完成者获得1学分。
- 4. 人文教育与学术交流(课程编号: XX66XXXX): 硕士研究生在校期间必须参加每年 6 月举办的"人文教育与学术交流月"活动。参加讲座两次以上,有举办学术单位的公章为依据,提交学习报告,导师审核签字,计入学术活动;完成人文教育与学术交流课程至少 1 门,完成者获得相应必修环节学分。
- 5. 论文开题报告及文献阅读综述(课程编号: 00006009): 指研究生在学位论文开题之前,必须阅读本学科前沿国内外文献 20 篇以上,其中外文文献 10 篇以上,写出 4000 字左右的文献综述报告,附上不少于 1000 字的英文摘要;综述报告应提出值得研究和解决的学术或技术问题,并在此基础上完成相应的开题报告,完成者获得 1 学分。

七、学位论文

(一)硕士学位论文的基本要求

1、选题要求

选题应直接来源于生产实际或具有明确的工程背景,其研究成果要有实际应用价值,拟解决的问题要有一定的技术难度和工作量,选题要具有一定的理论深度和先进性。具体可从以下方面选取:

- (1)来源于本工程领域的新集成电路产品研发、关键部件研发,以及对国外先进产品的引进消化和再研发。
- (2)来源于本领域的实际需求,可以是一个完整的工程设计项目,也可以是某一工程设计项目 中的子项目。要求具有较高技术含量,一定的先进性、新颖性及工作量。
 - (3) 来源于本领域工程实际或具有明确工程应用背景的应用研究,命题要有明确的实用性。
 - (4) 来源于实际需求,是行业或企业发展中急需解决的本领域工程与项目管理问题。
 - (5) 来源于实际需求,是集成电路行业或企业中急需调研的本领域工程及技术命题。
 - 2、形式及其内容要求

学位论文可以是研究类学位论文,也可以是设计类和产品开发类论文,如产品研发、工程设计等,还可以是软科学论文,如调查研究报告、工程管理论文等。

产品研发:是指来源于集成电路工程领域生产实际的新产品研发、关键部件研发,以及对国内外先进产品的引进消化再研发,包括了各种软、硬件产品的研发。论文内容包括绪论、研发理论及分析、实施与性能测试及总计等部分。

工程设计:是指综合运用集成电路工程理论、科学方法、专业知识与技术手段、技术经济、人文和环保知识,对具有较高技术含量的工程项目、大型设备、装备及其工艺等问题从事的设计。设

计方案科学合理、数据准确,符合国家、行业标准和规范,同时符合技术经济、环保和法律要求; 论文内容包括绪论、设计报告、总结及必要的附件;可以是工程图纸、工程技术方案、工艺方案等, 可以用文字、图纸、表格、模型等表述。

集成电路技术研究:是指来源于集成电路企业实际的技术研究,包括新型集成电路器件开发和建模、集成电路新工艺、集成电路设计方法学、集成电路测试技术以及封装技术等。包括对所研究的内容进行分析,确定研究技术路线和方法;阐述研究思路与技术原理,进行分析计算和仿真、测试分析等。

集成电路应用研究:是指直接来源于集成电路工程实际问题或具有明确的集成电路工程应用背景,综合运用基础理论与专业知识、科学方法和技术手段开展应用性研究。论文内容包括绪论、研究与分析、应用和检验及总结等部分。

工程与项目管理:项目管理是指集成电路工程领域一次性大型复杂工程任务的管理,研究的问题可以涉及项目生命周期的各个阶段或者项目管理的各个方面。工程管理是指以集成电路工程技术为基础的工程任务的管理,可以研究工程的各职能管理问题,也可以涉及工程各方面的技术管理问题。要求收集的数据可靠、充分,理论建模和分析方法科学正确,对研究结果进行案例分析,对解决方案进行验证或进行有效性和可行性分析。论文内容包括绪论、理论方法综述、解决方案设计、案例分析或有效性分析及总结等部分。

调研报告:是指对集成电路工程及相关领域的工程合计数命题进行调研,通过调研发现本质,找出规律,给出结论,并针对存在或可能存在的问题提出建议或解决方案。报告内容包括绪论、调研方法、资料和数据分析、对策或建议及总结等部分。既要对被调研对象的国内外现状及发展趋势进行分析,又要调研该命题的内在因素及外在因素,并对其进行深入剖析。

3、水平要求

- (1) 学位论文工作有一定的技术难度和深度,论文成果具有一定的先进性和实用性。
- (2) 学位论文工作应在导师指导下独立完成,论文工作量饱满。
- (3) 学位论文中的文献综述应对选题所涉及的工程技术问题或研究课题的国内外状况有清晰的描述与分析。
- (4) 学位论文的正文应综合应用基础理论、科学防范、专业知识和技术手段对所解决的科研问题或工程实际问题进行分析研究,并能在某些方面提出独立见解。
- (5) 学位论文撰写要求概念清晰,逻辑严谨,结构合理,层次凤鸣,文字通畅,图表清晰,概念清楚,数据可靠,计算正确,格式规范,应用他文应明确标注。

(二)硕士学位论文的工作

硕士学位论文的选题应对科技和社会发展有一定的价值。硕士生在导师指导下确定选题和开展学位论文工作。

1、开题报告

- (1) 开题报告时间。硕士生在确定选题,阅读大量文献的基础上,应在入学的第三学期末之前, 最迟应在第四学期末之前完成开题报告。
- (2) 开题报告方式。开题报告应以报告会的形式,在教(科)研室或以上范围公开举行;开题报告会须有本学科及相近学科3位副教授或相当专业技术职称以上的专家组成考评组,考评组以校内专家为主,至少应有一位来自相关行(企)业或工程部门的专家。考评组对研究生开题作出考评意见。
- (3) 开题报告内容。依据《开题报告表》的要求,做开题报告。在开题报告会后,及时完成《开题报告表》,在学院审核后,由研究生科保存,以备检查。

- (4) 若开题报告没能通过,在导师的指导下3个月后才能申请重新开题。两次开题报告不过者,应终止硕士生学业。
 - (5) 因正当原因改变选题,须按上述要求重做开题报告。
 - (6) 论文开题通过1年后方能申请学位论文答辩。

2、论文工作

硕士生应在校内外双导师指导下按计划按时完成学位论文工作。

论文工作的时间应不少于1年,论文工作期间应每周一次向导师汇报研究进展,研究生到校外单位做学位论文,要经校内导师、学院批准,并保证每月一次向导师汇报研究进展,按时完成相应工作。

3、学术论文发表要求

硕士研究生在申请硕士学位论文答辩前,必须满足如下"条件一"或"条件二"之任意一条要求,才能进行硕士论文答辩。

条件一:

以第一作者身份,并以电子科技大学名义,发表(或已录用)一篇 SCI 文章。

条件二:

应在公开出版的国内外学术刊物或国内外学术会议论文集上以第一作者身份,并以电子科技大学名义,发表(或已录用)1篇反映本人研究工作的学术论文全文,且申请一项发明专利(获得申请号或授权)。

上述规定中的"第一作者"是指排名第一,如老师排名第一,学生排名第二,排名第二的学生视为第一。

4、学位论文撰写

硕士生在导师指导下,按照《研究生学位论文(研究报告)撰写格式规范》的要求,独立完成学位论文,导师应对硕士生学位论文严格审查,把好质量关。

(三)学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行,其中评阅、答辩考评组以校内专家为主,但至少应有一位相关行业具有高级职称(或相当水平)的专家。

控制工程领域 全日制工程硕士研究生培养方案

(专业代码:085210)

控制理论及工程实践的发展是 20 世纪以来推动人类社会进步的重要动力,在工业生产、人民生活及国防建设等各个方面起着举足轻重的作用。自动化水平的高低是衡量一个国家现代化进程的重要标志。控制工程领域学科的研究范畴涵盖系统的建模、优化、控制算法、控制系统设计以及系统仿真等诸多方面,处处体现出本学科是集电子科学与技术、仪器科学与技术、计算机科学与技术、系统科学等多学科研究成果之大成的特点。

一、培养目标

热爱祖国,遵纪守法,具有良好的道德品质;掌握控制工程领域坚实的基础理论和宽广的专业知识;掌握解决工程问题的先进技术方法和现代技术手段;具有独立担负工程技术和工程管理工作的能力。

二、研究方向

- 1. 智能控制与信息处理
- 3. 检测技术与自动化装置
- 2. 电力电子与运动控制
- 4. 地理信息系统

三、培养方式和学习年限

全日制硕士专业学位研究生采用课程学习、实践教学和学位论文相结合的培养方式。通过课程 学习、实践教学和论文研究工作,掌握某一特定职业领域相关理论知识,培养解决实际问题的能力。 硕士研究生的培养采用校内外双导师共同指导的方式。

全日制硕士专业学位研究生学制为三年。提前完成硕士学业者,可申请提前半年毕业;若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过四年。

四、学分要求与课程学习要求

总学分要求不低于 36 个学分,其中课程总学分不低于 25 学分(学位课、非学位选修课),实践教学环节不低于 6 学分,必修环节不低于 5 学分。课程学分中,学位课不低于 16 学分,公共基础课必修,基础课至少选修一门,专业基础课不低于 4 个学分,多选一课程至少修 1 门。

允许在导师指导下、在相近学科门类或专业领域之间选修 1~2 门学位课作为本专业的学位课。 针对实践教学环节中开出的实验课程,可根据需要、进行跨学院跨专业选修。

学位课可以代替非学位课,但非学位课不能代替学位课。跨学科专业录取的硕士研究生应至少 补修本专业本科核心课程 2 门,通过导师考核后,才能选修专业课。

研究生导师负责指导研究生制定个人培养计划和选课。导师指导研究生自学与研究课题有关的知识,并列入个人培养计划,但不计学分。校外导师参与课程学习、实践教学环节的指导工作。

五、课程设置

全日制硕士专业学位研究生课程划分为学位课、非学位课、实践教学环节、必修环节四部分。

控制工程领域 全日制工程硕士研究生课程设置

	-	,	ロリューイ主マ火火火 ・・主・ローロリューイ主 PV、ユーBバナ	<u> </u>	12 1/2 =	1		
	类别	课程编号	课程名称	学时	学分	开课 学期	考核 方式	备注
学位课	公共基础课	16005004	中国特色社会主义理论与实践	36	2	1	考试	
		13005014	硕士研究生学位英语	90	3	1/2	考试	
		11005001	工程伦理与学术道德	20	1	1/2	考试	二选一
		11005002	知识产权与信息检索	20	1	1/2	考试	
	基础课	10005001	矩阵理论	60	3	1	考试	
		10005002	数理统计学	40	2	2	考试	
		10006001	泛函分析	60	3	1	考试	
		20005001	随机过程及应用	60	3	1	考试	
	专业基础课	07015012	信号处理方法及应用	40	2	2	考试	
		07026003	线性系统理论	50	2.5	1	考试	
		07026005	自适应控制	40	2	2	考试	
		07027007	先进控制技术	60	3	2	考试	
		07037001	现代检测技术	40	2	1	考试	
		20006003	*最优化理论与应用	50	2.5	1	考试	
		20007001	*模式识别	40	2	1	考试	
	专业 选修课	07025001	电气传动与自动控制	20	1	2		
		07025002	电网基础及新能源发电并网技术	40	2	1		
		07026004	系统建模方法	40	2	2		
		07026006	非线性系统理论	40	2	1		
		07027001	复杂系统性能评价和优化	20	1	2		
非		07027005	智能控制理论及应用	40	2	2		
学		07036001	无线传感器网络	20	1	1		
, 位选修课		07027008	时间频率的检测与控制技术	40	2	1		
		07045005	数字图象处理	40	2	2		
		07047003	计算机视觉	40	2	1		
		07047004	机器学习	40	2	2		
		07887001	学科前沿知识专题讲座	20	1	1		
		17016003	电力系统稳定与控制	40	2	2		
		17016007	数字化继电保护与智能变电站	40	2	1		
		19016011	现代导航与制导技术	40	2	1		
		19026002	系统工程理论与方法	40	2	2		
			·					

	16005011	自然辨证法概论	18	1	2	考查	公共选修
其他	16005012	马克思主义与社会科学方法论	18	1	2	考查	二选一
选修课		实验课程					
		跨专业领域或跨学科相关课程					
		基地专业实践					
	07415004	嵌入式系统设计	30	1.5	2		
	07415005	计算机控制集成技术	40	2	1		
分比地	07426003	仪器设计技术	50	2.5	1		详见第 "六"点
实践教 学环节	07426004	时域测试技术综合实验	40	2	2		
1-21. 12	07426005	测试系统集成技术	40	2	2		说明
	19416002	ADS_B 实验	20	1	1		
		其他跨专业或跨领域实践教学选修课					
	其他要求	工程/项目设计、知名企业认证考试等		1			
必修环节		详见第"六"点说明					
T+ W. 44 U	. AT I-P +/ /I	自动控制原理					
跨学科专业 补修本科		微机原理与应用		不计	学分		
11 19/71/11	N O WIE	脉冲与数字电路					

六、实践教学环节和必修环节

(一)实践教学环节:这是专业学位研究生培养过程中重要的特色培养环节,实践教学可采用集中实践与分段实践相结合的方式进行。可通过实践教学课程、基地实践、工程/项目设计、认证考试等方式完成,其中实践教学课程、基地实践为必修项目。

实践教学课程主要指突出实践训练的实验课程,全校可通选,完成者取得相应学分。

基地实践为 2-4 个学分,按照实践时间 1-3 个月、3-6 个月、6-12 个月及以上作为实践时间单位,分别认定为 2 学分、3 学分和 4 学分。要求提交实践总结报告,实践基地(单位)就学生提交的报告给予相关支撑书面材料证明,根据实际实践时间,经导师审核通过,可获得相应学分。

进行工程/项目设计者,导师负责审核把关,通过者可获得1个学分。

知名企业认证考试:通过由研究生院认定的知名企业的认证考试,并获得证书者,可获得相应学分。

- (二)必修环节包含五个部分,要求研究生分别完成以下内容:
- 1. 素质教育公选课(课程编号: 00005XXX): 重点加强研究生综合素质教育,研究生可选修 1门,考核通过后获 1 个学分。
 - 2. 教学实践、创新创业与社会实践可以二选一,完成后获得相应学分。
- (1) 教学实践(课程编号: 00006001, 学时 40): 主要是面向本科生的教学辅导工作,如在导师或任课教师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等,工作量不少于 40 学时。由导师或任课教师给出评语,学院给予书面证明,报学生所在学院备案。完成者获得 1 学分。

(2) 创新创业与社会实践(课程编号: 00006002): 创新创业与社会实践学分认定范围主要包含五大类,即: 竞赛获奖、知识产权、科技成果转化、自主创业、社会实践等。研究生完成五类中任意一种类别,均可获得相应学分。具体界定如下:

竞赛获奖:指研究生参加由政府教育行政主管部门、专业学术团体、专业教学指导委员会组织 主办的国际、国家级学术科技类、创新创业类、文化艺术体育类等竞赛并获得省部级及以上奖项可 获得1个学分。

知识产权:包括发明专利、实用新型专利等,如外观设计专利、计算机软件著作权、集成电路 布图专有权等。完成后可申请1个学分。

科技成果转化:指研究生的专利以实施许可、技术转让或技术入股方式进行技术转移等。完成 后可申请1个学分。

自主创业:指研究生在校学习期间自主创建公司(应与所学专业相关),完成公司登记注册并顺利运营。完成后可申请1个学分。

社会实践:主要指研究生运用所学知识到地方政府、科研院所、企事业单位等开展基层挂职及调研、公益支教、扶贫服务、技术合作等实践项目。完成后根据要求提交总结或报告,并附相关证明材料,报所在学院备案。社会实践项目不得与联合培养基地专业实践项目重复。完成后可获得1个学分。

- 3. 学术活动(课程编号: 00006003, 1 个学分): 为了拓宽研究生的知识面,规定硕士生在校期间必须参加十次以上校内外学术活动,有举办学术单位的公章为依据,报学生所在学院备案,完成者获得1学分。
- 4. 人文教育与学术交流(课程编号: XX66XXXX): 硕士研究生在校期间必须参加每年 6 月举办的"人文教育与学术交流月"活动。参加讲座两次以上,有举办学术单位的公章为依据,提交学习报告,导师审核签字,计入学术活动;完成人文教育与学术交流课程至少 1 门,完成者获得相应必修环节学分。
- 5. 论文开题报告及文献阅读综述(课程编号: 00006009): 指研究生在学位论文开题之前,必须阅读本学科前沿国内外文献 20 篇以上,其中外文文献 10 篇以上,写出 4000 字左右的文献综述报告,附上不少于 1000 字的英文摘要;综述报告应提出值得研究和解决的学术或技术问题,并在此基础上完成相应的开题报告,完成者获得 1 学分。

七、学位论文

(一) 硕士学位论文的基本要求

1. 选题要求

学位论文课题应来源于企业,有明确的工程应用背景和应用价值,可涉及控制工程领域系统或者构成系统的部件、设备、环节的设计与运行,分析与集成,研究与开发管理与决策等,特别是针对信息获取、传递、处理和利用的新系统、新装备、新产品、新工艺、新技术、新软件的研发。论文所涉及的课题可以是一个完整的工程项目,也可以是某一个大项目中的子项目,且应有一定的技术难度和工作量。论文要有一定的理论基础,具有先进性与创新性。

学位论文课题一般应是企业立项的开发课题,要求技术背景清晰,任务明确,条件具备,周期适当,经费充足。

工程硕士研究生应是论文课题的负责人或者主要参与者,要参加论文课题的全过程。论文选题范围要适当,既不要太大、太泛,也不可以太小、太浅,应有一定的工程工作量、技术难度和技术创新需求,特别应选择单位有明确工程技术背景和应有价值的项目。

2. 形式要求

学位论文工作具有多样性的特点,学位论文可以具有产品研发、工程设计、应用研究、工程与项目管理等不同形式及内容。

产品研发:是指来源于控制工程领域生产实际的新产品研发、关键部件研发、以及对国内外先进产品的引进消化再研发,包括各种软、硬件产品的研发。内容包括绪论、研发理论及分析、实施与性能测试及总结部分。

工程设计:是指综合运用控制工程理论、科学方法、专业知识与技术手段、技术经济、人文和环保知识、对具有较高技术含量的工程项目、大型设备、装备及其工艺等问题从事的设计。设计方案科学合理,数据准确,符合国家、行业标准和规范,同时符合技术经济、环保和法律要求;内容包括绪论、设计报告、总结及必要的附件;可以是工程图纸、工程技术方案、工艺方案等,可以用文字、图纸、表格、模型等表述。

应用研究:是指直接来源于控制工程实际问题或具有明确的控制工程应用背景,综合运用基础理论与专业知识、科学方法和技术手段开展应用性研究。内容包括绪论、研究与分析、应用和检验及总结等部分。

工程与项目管理:项目管理是指控制工程领域一次性大型复杂工程任务的管理,研究的问题可以涉及项目生命周期的各个阶段或者项目管理的各个方面,也可以是企事业项目化管理、项目组合管理或多项目管理问题。工程管理是指以自然科学和控制工程技术为基础的工程任务,可以研究控制工程的各职能管理问题,也可以涉及控制工程的各方面技术管理问题等。内容包括绪论、理论方法综述、解决方案设计、案例分析或者有效性分析及总结等部分;要求就本领域工程与项目管理中存在的实际问题开展研究,对国内外解决该类问题的具有代表性的管理方法及相关领域的方法进行案例分析和验证,或进行有效性和可行性分析。

3. 水平要求

控制工程领域工程硕士专业学位的学位论文的水平要求体现在以下方面:

- (1) 学位论文工作有一定的技术难度和深度,论文成果具有一定的先进性的实用性。
- (2) 学位论文工作应在导师指导下独立完成,论文工作量饱满。
- (3) 学位论文中的文献综述应对选题所涉及的工程技术问题或研究状况有清晰的描述与分析。
- (4) 学位论文的正文应综合应用基础理论、科学方法、专业知识和技术手段对所解决的科学问题或工程实际问题进行分析研究,并能在某些方面提出独立见解。
- (5) 学位论文撰写要求概念清晰,逻辑严谨,结构合理,层次分明,文字通畅,图标清晰,概念清楚,数据可靠,计算正确。
- (二)硕士学位论文工作

硕士生应在导师指导下确定选题和开展学位论文工作,校外导师参与论文环节的指导工作。

1. 开题报告

- (1) 开题报告时间。硕士生在确定选题,大量阅读文献的基础上,应在入学的第三学期末之前,最迟应在第四学期末之前完成开题报告。
- (2) 开题报告方式。开题报告应以报告会的形式,在教(科)研室或以上范围公开举行; 开题报告会须有本学科及相近学科 3 位副教授或相当专业技术职称以上的专家组成考评组,考评组以校内专家为主,至少应有一位来自相关行(企)业或工程部门的专家。考评组对研究生开题作出考评意见。
 - (3) 开题报告内容。依据《开题报告表》的要求,做开题报告。在开题报告会后,及时完成

《开题报告表》,在学院审核后,由研究生科保存,以备检查。

- (4) 若开题报告没能通过,在导师的指导下 3 个月后才能申请重新开题。两次开题报告不过者,应终止硕士生的学业。
 - (5) 因正当原因改变选题,须按上述要求重做开题报告。
 - (6) 论文开题通过1年后方能申请学位论文答辩。

2. 论文工作

硕士生应在校内外双导师指导下按计划按时完成学位论文工作。

论文工作的时间应不少于1年,论文工作期间应每周一次向导师汇报研究进展;研究生到校外单位做学位论文,要经校内导师、学院批准,并保证每月一次向导师汇报研究进展,按时完成相应工作。

3. 学位论文的撰写

硕士生在导师指导下,按照《研究生学位论文(研究报告)撰写格式规范》的要求,独立完成学位论文,导师应对硕士生学位论文严格审查,把好质量关。

(三)学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行,其中评阅、答辩考评组以校内专家为主,但至少应有一位相关行业具有高级职称(或相当水平)的专家。

计算机技术领域 全日制工程硕士研究生培养方案

(专业代码:085211)

计算机技术在国民经济、国防建设、人民生活等各个方面的广泛的应用,推动了产业结构、产品结构、经营管理和服务方式上的巨大变革,计算机科学与技术已成为整个科学技术领域的带头学科之一。本学科主要研究计算机及其相关领域的、具有共性的技术和方法,以及各种新兴领域的、前沿性的计算机新应用。本学科除了与同级别的二级学科计算机软件与理论、计算机系统结构、计算机应用技术相关之外,还与一级学科电子科学与技术、信息与通信工程和控制科学与工程等研究领域有交叉。

一、培养目标

硕士学位获得者应具有本学科坚实的基础理论和系统的专业知识,了解本学科领域的最新前沿和动态,掌握本学科的现代实验方法和技能,熟练地掌握一门外语,能适应科学进步及社会发展的需要,具有从事科学理论研究或独立担负工程技术实践工作的能力。同时应具有严谨的科研作风,良好的合作精神和较强的交流能力,毕业后能胜任与计算机领域相关的科学研究、软件、硬件系统开发,为将来成为学科带头人、技术负责人打下坚实的基础。

二、研究方向(培养方向、领域方向)

- 1. 计算机网络与通信
- 2. 云计算与大数据处理
- 3. 嵌入式系统及应用

- 4. 网络与信息安全
- 5. 软件系统与工程
- 6. 数字媒体技术

7. 智能技术与应用

三、培养方式和学习年限

全日制硕士专业学位研究生采用课程学习、实践教学和学位论文相结合的培养方式。通过课程 学习、实践教学和论文研究工作,掌握某一特定职业领域相关理论知识,培养解决实际问题的能力。 硕士研究生的培养采用校内外双导师共同指导的方式。

全日制硕士专业学位研究生学制为三年。提前完成硕士学业者,可申请提前半年毕业;若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过四年。

四、课程学习与学分基本要求

总学分要求不低于 36 个学分,其中课程总学分不低于 25 学分,实践教学环节不低于 6 学分,必修环节不低于 5 学分。课程学分中,学位课不低于 16 学分,公共基础课必修,基础课至少选修一门,多选一课程至少选修 1 门。

允许在导师指导下、在相同学科门类或专业领域之间选修 1~2 门学位课作为本专业的学位课。 针对实践教学环节中开出的实验课程,可根据需要、进行跨学院跨专业选修。

学位课可以代替非学位课,但非学位课不能代替学位课。对于跨学科专业录取的硕士生,要求 补修相应专业本科核心课程至少2门,通过导师考核后,才能选修专业课。

研究生导师负责指导研究生制定个人培养计划和选课。导师指导研究生自学与研究课题有关的知识,并列入个人培养计划,但不计学分。校外导师参与课程学习、实践教学环节的指导工作。

五、课程设置

全日制硕士专业学位课程划分为学位课、非学位课、实践教学环节、必修环节四部分。

计算机技术领域 全日制工程硕士研究生课程设置

	类别	课程编号	课程名称	学时	学分	开课 学期	考核 方式	备注
		16005004	中国特色社会主义理论与实践研究	36	2	1	考试	
	公共	13005014	硕士研究生学位英语	90	3	1/2	考试	
	基础课	11005001	工程伦理与学术道德	20	1	1/2	考试	二选一
		11005002	知识产权与信息检索	20	1	1/2	考试	
		20005001	随机过程及应用	60	3	1	考试	
学	基础课	20006030	数论	40	2	1	考试	
立位		20005003	组合数学	40	2	1	考试	
课		06016008	高级计算机系统结构	40	2	1	考试	
"		06017019	大数据分析与挖掘	40	2	2	考试	
	专业	06066002	现代密码理论	40	2	2	考试	
	基础课	06067009	软件安全性分析	40	2	2	考试	
		20006011	嵌入式系统设计	40	2	2	考试	
		20006026	算法设计与分析	40	2	2	考试	
		20006027	高级网络计算	40	2	2	考试	
		06016011	Linux 环境高级编程	20	1	1		
		06016012	数据库新技术	20	1	1		
		06016013	互联网络程序设计	20	1	2		
		06016014	计算机三维动画技术	20	1	2		
		06016015	计算机高级图形学	20	1	2		
非		06016020	机器学习	40	2	2		
学	±.II.	06016021	GPU 并行编程	20	1	2		
位选	专业 选修课	06016022	处理器设计	20	1	2		
修		06016023	高级软件开发技术	20	1	1		
课		06016024	Linux 操作系统内核技术	20	1	2		
		06017003	移动计算技术	20	1	1		
		06017004	无线自组织网络技术	20	1	2		
		06017013	云计算	20	1	1		
		06017018	高级计算机网络	20	1	2		
		06067007	网络信息对抗	20	1	1		

		16005011	自然辨证法概论	18	1	2	考查	二选一		
	其他	16005012	马克思主义与社会科学方法论	18	1	2	考查			
	选修课		实验课程							
	Z J J V K		前沿知识讲座							
			跨专业领域或跨学科相关课程							
5	는 마 ઋ		基地专业实践					详见第		
	实践教 学环节	00405XXX	实践教学环节		6			"六"点		
	于%1. 1 ₁	其他要求	工程/项目设计、知名企业认证考试等					说明		
必	修环节		详见第"六"点说明		_					
跨	等学科专业	2领域考生	数据库原理		不计	学				
Ź			跨字科 专业 补修本科标	核心课程	面向对象编程(C++)		/ `\	子刀		

六、实践教学环节和必修环节

(一)实践教学环节:这是专业学位研究生培养过程中重要的特色培养环节,实践教学可采用集中实践与分段实践相结合的方式进行。可通过实践教学课程、基地实践、工程/项目设计、认证考试等方式完成,其中实践教学课程、基地实践为必修项目。

实践教学课程主要指突出实践训练的实验课程,全校可通选,完成者取得相应学分。

基地实践为 2-4 个学分,按照实践时间 1-3 个月、3-6 个月、6-12 个月及以上作为实践时间单位,分别认定为 2 学分、3 学分和 4 学分。要求提交实践总结报告,实践基地(单位)就学生提交的报告给予相关支撑书面材料证明,根据实际实践时间,经导师审核通过,可获得相应学分。

进行工程/项目设计者,导师负责审核把关,通过者可获得1个学分。

知名企业认证考试:通过由研究生院认定的知名企业的认证考试,并获得证书者,可获得相应学分。

- (二)必修环节包含五个部分,要求研究生分别完成以下内容:
- 1. 素质教育公选课(课程编号: 00005XXX): 重点加强研究生综合素质教育,研究生可选修 1门,考核通过后获 1 个学分。
 - 2. 教学实践、创新创业与社会实践可以二选一,完成后获得相应学分。
- (1) 教学实践(课程编号: 00006001, 学时 40): 主要是面向本科生的教学辅导工作,如在导师或任课教师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等,工作量不少于 40 学时。由导师或任课教师给出评语,学院给予书面证明,报学生所在学院备案。完成者获得 1 学分。
- (2) 创新创业与社会实践(课程编号: 00006002): 创新创业与社会实践学分认定范围主要包含五大类,即: 竞赛获奖、知识产权、科技成果转化、自主创业、社会实践等。研究生完成五类中任意一种类别,均可获得相应学分。具体界定如下:

竞赛获奖:指研究生参加由政府教育行政主管部门、专业学术团体、专业教学指导委员会组织 主办的国际、国家级学术科技类、创新创业类、文化艺术体育类等竞赛并获得省部级及以上奖项可 获得1个学分。

知识产权:包括发明专利、实用新型专利等,如外观设计专利、计算机软件著作权、集成电路 布图专有权等。完成后可申请1个学分。

科技成果转化: 指研究生的专利以实施许可、技术转让或技术入股方式进行技术转移等。完成

后可申请1个学分。

自主创业:指研究生在校学习期间自主创建公司(应与所学专业相关),完成公司登记注册并顺利运营。完成后可申请1个学分。

社会实践:主要指研究生运用所学知识到地方政府、科研院所、企事业单位等开展基层挂职及调研、公益支教、扶贫服务、技术合作等实践项目。完成后根据要求提交总结或报告,并附相关证明材料,报所在学院备案。社会实践项目不得与联合培养基地专业实践项目重复。完成后可获得1个学分。

- 3. 学术活动(课程编号: 00006003, 1 个学分): 为了拓宽研究生的知识面,规定硕士生在校期间必须参加十次以上校内外学术活动,有举办学术单位的公章为依据,报学生所在学院备案,完成者获得1学分。
- 4. 人文教育与学术交流(课程编号: XX66XXXX): 硕士研究生在校期间必须参加每年 6 月举办的"人文教育与学术交流月"活动。参加讲座两次以上,有举办学术单位的公章为依据,提交学习报告,导师审核签字,计入学术活动;完成人文教育与学术交流课程至少 1 门,完成者获得相应必修环节学分。
- 5. 论文开题报告及文献阅读综述(课程编号: 00006009): 指研究生在学位论文开题之前,必须阅读本学科前沿国内外文献 20 篇以上,其中外文文献 10 篇以上,写出 4000 字左右的文献综述报告,附上不少于 1000 字的英文摘要;综述报告应提出值得研究和解决的学术或技术问题,并在此基础上完成相应的开题报告,完成者获得 1 学分。

七、学位论文

(一) 硕士学位论文的基本要求

1. 选题要求

选题应直接来源于应用课题、工程实际或具有明确的工程背景,其研究成果要有实际或潜在的应用价值。同时,选题要有一定的技术难度和工作量,要具有一定的理论深度。主要可从以下几个方面选取:

- (1) 企业信息技术攻关、改造、技术推广与应用。
- (2) 新系统、新设备、新产品、新方法、新技术的研发。
- (3) 引进、消化、吸收和应用国外先进信息技术项目。
- (4) 信息技术领域的应用基础性研究和预研专题。
- (5) 计算机工程项目的设计与实施。
- (6) 其他相关课题。
- 2. 形式及其内容要求

论文形式可以多样化,既可以是研究类学位论文,如应用研究论文,也可以是设计类和产品开发类论文,如产品研发、工程设计等。

产品研发:是指来源于计算机技术领域生产实际的新产品研发、关键部件研发,以及对国内外先进产品的引进消化再研发,包括了各种软、硬件产品的研发。论文内容包括绪论、研发理论及分析、实施与性能测试及总结等部分。

工程设计:是指综合运用计算机技术理论、科学方法、专业知识与技术手段、技术经济、人文和环保知识,对具有较高技术含量的工程项目、大型设备、装备及其工艺等问题从事的设计。设计方案科学合理、数据准确,符合国家、行业标准和规范,同时符合技术经济、环保和法律要求。论文内容包括绪论、设计报告、总结及必要的附件;可以是工程图纸、工程技术方

案、工艺方案等,可以用文字、图纸、表格、模型等表述。

应用研究:是指直接来源于计算机技术实际问题或具有明确的计算机技术应用背景,综合运用基础理论与专业知识、科学方法和技术手段开展的应用性研究。论文内容包括绪论、研究与分析、应用和检验及总结等部分。

3. 水平要求

- (1) 学位论文工作有一定的技术难度和深度,论文成果具有一定的先进性和实用性。
- (2) 学位论文工作应在导师指导下独立完成,论文工作量饱满。
- (3) 学位论文中的文献综述应对选题所涉及的工程技术问题或研究课题的国内外状况有清晰的描述与分析。
- (4) 学位论文的正文应综合应用基础理论、科学方法、专业知识和技术手段对所解决的科研问题或工程实际问题进行分析研究,并能在某些方面提出独立见解。
- (5) 学位论文撰写要求概念清晰,逻辑严谨,结构合理,层次分明,文字通畅,图表清晰,概念清楚,数据可靠,计算正确,格式规范,引用他人文章应明确标注。
- (二)硕士学位论文工作

硕士生应在导师指导下确定选题和开展学位论文工作,校外导师参与论文环节的指导工作。

1. 开题报告

- (1) 开题报告时间。硕士生在确定选题,阅读文献和专业实习的基础上,应在入学的第三学期初(9月初)完成开题报告。
- (2) 开题报告方式。开题报告应以报告会的形式,在教(科)研室或以上范围公开举行; 开题报告会须有本学科及相近学科 3 位副教授或金融行业相当专业技术职称以上的专家组成考评组,考评组以校内专家为主,至少应有一位来自相关行(企)业或工程部门的专家。考评组对研究生开题作出考评意见。
- (3) 开题报告内容。依据《开题报告表》的要求,做开题报告。在开题报告会后,及时完成《开题报告表》,交学院研究生科保存,以备检查。
- (4) 若开题报告没能通过,在导师的指导下3个月后才能申请重新开题。2次开题报告不过者,应终止硕士生的学业。
 - (5) 因正当原因改变选题,须按上述要求重做开题报告。
 - (6) 论文开题通过九个月后方能申请学位论文答辩。

2. 论文工作

硕士生应在校内外双导师指导下按计划按时完成学位论文工作。

论文工作的时间应不少于1年,论文工作期间应每周一次向导师汇报研究进展;研究生到校外单位做学位论文,要经校内导师、学院批准,并保证每月一次向导师汇报研究进展,按时完成相应工作。

3. 学位论文的撰写

硕士生在导师指导下,按照《研究生学位论文(研究报告)撰写格式规范》的要求,独立完成学位论文,导师应对硕士生学位论文严格审查,把好质量关。

(三)学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行,其中评阅、答辩考评组以校内专家为主,但至少应有一位相关行业具有高级职称(或相当水平)的专家。

软件工程领域 全日制工程硕士研究生培养方案

(专业代码:085212)

软件工程学科是信息技术领域中发展最快的学科领域之一,软件产业也成为各国经济发展的支柱产业。软件工程领域总体发展形成了宽范围、多维度、多层次、多交叉的体系结构,知识领域包括软件需求、软件设计、软件构建、软件测试、软件维护、软件配置管理、软件项目管理、软件工程工具与方法、软件质量、软件安全、软件道德与法律等;也涉及到系统工程、领域工程、数字化技术、嵌入式系统、网络与信息安全,系统管理与支持、市场营销等多学科交叉领域。

一、培养目标

本专业领域以培养工程型软件人才为目标,培养适应国家经济建设和发展需要的中高级软件工 程师后备人才。

本专业领域专业学位硕士毕业生应具有较强的英语交流能力和系统工程能力,熟练掌握先进的程序设计技术、主流系统工具,能遵循国际软件开发规范与标准进行系统分析、设计和编程,具有一定的项目管理能力,能熟练应用现代软件技术、方法和工具,从事软件工程领域等系统与软件设计、开发、管理与技术支持的应用性创新开发工作。

二、研究方向(培养方向、领域方向)

- 1. 软件理论与技术
- 2. 网络工程及网络安全技术
- 3. 嵌入式软件技术与应用
- 4. 数字信息处理技术
- 5. 云计算与大数据处理
- 6. 移动计算技术

三、培养方式和学习年限

全日制硕士专业学位研究生采用课程学习、实践教学和学位论文相结合的培养方式。通过课程 学习、实践教学和论文研究工作,掌握某一特定职业领域相关理论知识,培养解决实际问题的能力。 硕士研究生的培养采用校内外双导师共同指导的方式。

全日制硕士专业学位研究生学制为三年。提前完成硕士学业者,可申请提前半年毕业;若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过四年。

四、课程学习与学分基本要求

总学分要求不低于 36 学分,其中课程总学分不低于 25 学分,实践教学环节不低于 6 学分,必修环节不低于 5 学分;课程学分中,学位课要求不低于 16 个学分。公共基础课必修,基础课至少选修一门,多选一课程至少选修 1 门。

允许在导师指导下、在相同学科门类或专业领域之间选修 1~2 门学位课作为本专业的学位课。 针对实践教学环节中开出的实验课程,可根据需要、进行跨学院跨专业选修。

学位课可以代替非学位课,但非学位课不能代替学位课。对于跨学科专业录取的硕士生,要求 补修相应专业本科核心课程至少 2 门,通过导师考核后,才能选修专业课。

研究生导师负责指导研究生制定个人培养计划和选课。导师指导研究生自学与研究课题有关的知识,并列入个人培养计划,但不计学分。校外导师参与课程学习、实践教学环节的指导工作。

五、课程设置

全日制硕士专业学位课程划分为学位课、非学位课、实践教学环节、必修环节四部分。

软件工程硕士 全日制专业学位研究生课程设置

14.5	类 别	课程编号	课程名称	学时	学分	开课 学期	考核方式	备注
	V ++	16005004	中国特色社会主义理论与实践 研究	36	2	1	考试	
	公共 基础课	13005014	硕士研究生学位英语	90	3	1/2	考试	
337.	至屾床	11005001	工程伦理与学术道德	20	1	1/2	考试	二选一
学位		11005002	知识产权与信息检索	20	1	1/2	考试	
课	基础课	20006024	随机过程与排队论	40	2	1	考试	
		20006026	算法设计与分析	40	2	2	考试	
	专业	20006036	网络计算模式	40	2	2	考试	
	基础课	22016001	软件架构模型与设计	40	2	2	考试	
		22016004	高级计算机结构	40	2	2	考试	
		20006011	嵌入式系统设计	40	2	2	考查/考试	
		22016002	网络编程	40	2	1	考查	
	专业 选修课	22016005	UNIX/Linux 操作系统内核结构	40	2	1	考查/考试	
		22416002	信息系统分析与设计	40	2	1	考查	
非		22416003	高级数字图像处理	40	2	1	考查/考试	
学		22017003	数据分析与数据挖掘	40	2	2	考查/考试	
位		22017004	网络安全理论与技术	40	2	1	考试	
课		16005011	自然辨证法概论	18	1	2	考查	>4b
	++ /.l.	16005012	马克思主义与社会科学方法论	18	1	2	考查	二选一
	其他 选修课		实验课程					
	处修床		前沿知识讲座					
			跨专业领域或跨学科相关课程					
			基地专业实践					
		00405XXX	实践教学环节					
		22417001	多媒体应用编程实验	40	2	2	考查	详见第
	实践教 学环节	22417002	逆向工程	40	2	2	考查	"六"点
j j		22417005	Android 系统结构与应用编程 (CMMI 实践)	40	2	2	考查	说明
		其他要求	工程/项目设计、知名企业认证 考试等					

类 别	课程编号	课程名称	学时	学分	开课 学期	考核方式	备注
必修环节		详见第"六"点说明					
跨学科专业	2考生补修	软件工程基础		- 不计学分			
本科核	心课程	数据结构					

六、实践教学环节和必修环节

(一)实践教学环节:这是专业学位研究生培养过程中重要的特色培养环节,实践教学可采用集中实践与分段实践相结合的方式进行。可通过实践教学课程、基地实践、工程/项目设计、认证考试等方式完成,其中实践教学课程、基地实践为必修项目。

实践教学课程主要指突出实践训练的实验课程,全校可通选,完成者取得相应学分。

基地实践为 2-4 个学分,按照实践时间 1-3 个月、3-6 个月、6-12 个月及以上作为实践时间单位,分别认定为 2 学分、3 学分和 4 学分。要求提交实践总结报告,实践基地(单位)就学生提交的报告给予相关支撑书面材料证明,根据实际实践时间,经导师审核通过,可获得相应学分。

进行工程/项目设计者,导师负责审核把关,通过者可获得1个学分。

知名企业认证考试:通过由研究生院认定的知名企业的认证考试,并获得证书者,可获得相应学分。

- (二)必修环节包含五个部分,要求研究生分别完成以下内容:
- 1. 素质教育公选课(课程编号: 00005XXX): 重点加强研究生综合素质教育,研究生可选修 1门,考核通过后获 1 个学分。
 - 2. 教学实践、创新创业与社会实践可以二选一,完成后获得相应学分。
- (1) 教学实践(课程编号: 00006001, 学时 40): 主要是面向本科生的教学辅导工作,如在导师或任课教师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等,工作量不少于 40 学时。由导师或任课教师给出评语,学院给予书面证明,报学生所在学院备案。完成者获得 1 学分。
- (2) 创新创业与社会实践(课程编号: 00006002): 创新创业与社会实践学分认定范围主要包含五大类,即: 竞赛获奖、知识产权、科技成果转化、自主创业、社会实践等。研究生完成五类中任意一种类别,均可获得相应学分。具体界定如下:

竞赛获奖:指研究生参加由政府教育行政主管部门、专业学术团体、专业教学指导委员会组织 主办的国际、国家级学术科技类、创新创业类、文化艺术体育类等竞赛并获得省部级及以上奖项可 获得1个学分。

知识产权:包括发明专利、实用新型专利等,如外观设计专利、计算机软件著作权、集成电路 布图专有权等。完成后可申请1个学分。

科技成果转化:指研究生的专利以实施许可、技术转让或技术入股方式进行技术转移等。完成 后可申请 1 个学分。

自主创业:指研究生在校学习期间自主创建公司(应与所学专业相关),完成公司登记注册并顺利运营。完成后可申请1个学分。

社会实践:主要指研究生运用所学知识到地方政府、科研院所、企事业单位等开展基层挂职及调研、公益支教、扶贫服务、技术合作等实践项目。完成后根据要求提交总结或报告,并附相关证明材料,报所在学院备案。社会实践项目不得与联合培养基地专业实践项目重复。完成后可获得1

个学分。

- 3. 学术活动(课程编号: 00006003, 1 个学分): 为了拓宽研究生的知识面,规定硕士生在校期间必须参加十次以上校内外学术活动,有举办学术单位的公章为依据,报学生所在学院备案,完成者获得1学分。
- 4. 人文教育与学术交流(课程编号: XX66XXXX): 硕士研究生在校期间必须参加每年 6 月举办的"人文教育与学术交流月"活动。参加讲座两次以上,有举办学术单位的公章为依据,提交学习报告,导师审核签字,计入学术活动;完成人文教育与学术交流课程至少 1 门,完成者获得相应必修环节学分。
- 5. 论文开题报告及文献阅读综述(课程编号: 00006009): 指研究生在学位论文开题之前,必须阅读本学科前沿国内外文献 20 篇以上,其中外文文献 10 篇以上,写出 4000 字左右的文献综述报告,附上不少于 1000 字的英文摘要;综述报告应提出值得研究和解决的学术或技术问题,并在此基础上完成相应的开题报告,完成者获得1学分。

七、学位论文

(一)硕士学位论文的基本要求

1. 选题要求

论文选题应源于 IT 工程实践,具有明确软件工程背景,其研究成果具有实际应用价值,拟解决的问题具有一定软件工程技术难度,能体现所学知识的综合运用,有足够工作量;论文研究应体现作者的知识更新及在具体工程应用中的新意,论文研究结果能对软件行业,特别是所研究领域的技术进步起到促进作用。具体可以在以下几个方面选取:

- (1) 技术攻关, 技术改造, 技术推广与应用;
- (2) 新产品、新工具、新系统、新应用软件的研制与开发;
- (3) 引进、消化、吸收和应用国外先进技术项目;
- (4) 基础性应用研究或技术预研项目:
- (5) 工程设计与实施项目;
- (6) 较为完整的工程技术项目或工程管理项目的规划或研究;
- 2. 形式要求

软件工程领域工程硕士专业学位的论文形式可以多样化,既可以是研究类学位论文,如应用研究论文,也可以是设计类和产品开发论文,如产品研发、工程设计等,还可以是软科学论文,如技术研究报告、工程管理论文等。

产品研发:来源于软件工程领域生产实际的新产品研发、关键部件研发、以及对国内外先进产品的引进消化再研发,包括了各种软、硬件产品的研发。内容包括绪论、研发理论及分析、实施与性能测试及总结等部分。

工程设计:是指综合运用软件工程理论、科学方法、专业知识与技术手段、技术经济、人文和环保知识,对具有较高技术含量的工程项目、大型智能设备、智能装备及其计算处理等问题从事的系统设计。设计方案科学合理、数据准确,符合国家、行业标准和规范,同时符合技术经济、环保和法律要求。内容包括绪论、设计报告、总结及必要的附件;可以是工程技术报告、工程技术方案、系统模型方案等,可以用文字、图纸、表格、模型等表述。

应用研究:是指直接来源于软件工程实际问题或具有明确的软件工程应用背景,综合运用基础理论与专业知识、科学方法与技术手段开展应用性研究。内容包括绪论、研究与分析、应用和检验及总结等部分。

工程/项目管理:项目管理是指软件领域一次性大型复杂工程任务的管理,研究的问题可以涉及项目生命周期的各个阶段或者项目管理的各个方面,也可以是企事业项目化管理、项目组合管理或多项目管理问题。工程管理是指以自然科学和软件工程技术为基础的工程任务的管理,可以研究软件工程的各职能管理问题,也可以涉及软件工程各方面的技术管理问题等。要求本领域问题和项目管理中存在的实际问题开展研究,对国内外解决该类问题的具有代表性的管理方法及相关领域的方法进行分析、选择或必要改进。对该类问题的解决方案进行设计,并对该解决方案进行案例分析和验证,或进行有效性和可行性分析。

调研报告:是指对软件及相关领域的工程和技术命题进行调研,通过调研发现本质,找出规律、给出结论,并针对存在或可能存在的问题提出建议或解决方案。包括绪论、调研方法、资料和数据分析、对策或建议及总结等部分。既要对被调研对象的国内外现状及发展趋势进行分析,又要调研该命题的内在因素及外在因素,并对其进行深入剖析。

3. 水平要求

软件工程领域工程硕士专业学位的学位论文的水平要求体现在以下方面:

- (1) 学位论文工作有一定的技术难度和深度,论文成果具有一定的先进性和实用性;
- (2) 学位论文工作应在导师指导下独立完成,论文工作量饱满;
- (3) 学位论文中的文献综述应对选题所涉及的工程技术问题或研究课题的国内外状况有清晰的描述与分析:
- (4) 学位论文的正文应综合应用基础理论、科学方法、专业知识和技术手段对所解决的科研问题或工程实际问题进行分析研究,并能在某些方面提出独立见解。
- (5) 学位论文撰写要求概念清晰,逻辑严谨,结构合理,层次分明,文字通畅、图表清晰、概念清楚、数据可靠、计算正确。
- (6)通过学位论文研究及所开展的的科研、技术开发或改造、工程或项目管理活动,对相对独立完成的课题获得的阶段性成果进行总结,鼓励发表学术论文和申请发明专利等创新性成果。

(二)硕士学位论文工作

硕士生应在导师指导下确定选题和开展学位论文工作,校外导师参与论文环节的指导工作。

1. 开题报告

- (1) 开题报告时间。硕士生在确定选题,阅读文献和专业实习的基础上,应在入学的第三学期初(9月初)完成开题报告。
- (2) 开题报告方式。开题报告应以报告会的形式,在教(科)研室或以上范围公开举行; 开题报告会须有本学科及相近学科 3 位副教授或或软件 IT 行业相当专业技术职称以上的专家组成考评组,考评组以校内专家为主,至少应有一位来自相关行(企)业或工程部门的专家。考评组对研究生开题作出考评意见。
- (3) 开题报告内容。依据《开题报告表》的要求,做开题报告。在开题报告会后,及时完成《开题报告表》,交学院研究生科保存,以备检查。
- (4) 若开题报告没能通过,在导师的指导下3个月后才能申请重新开题。2次开题报告不过者,应终止硕士生的学业。
 - (5) 因正当原因改变选题,须按上述要求重做开题报告。
 - (6) 论文开题通过九个月后方能申请学位论文答辩。

2. 论文工作

硕士生应在校内外双导师指导下按计划按时完成学位论文工作。

论文工作的时间应不少于1年,论文工作期间应每周一次向导师汇报研究进展;研究生到校外

单位做学位论文,要经校内导师、学院批准,并保证每月一次向导师汇报研究进展,按时完成相应工作。

3. 学位论文的撰写

硕士生在导师指导下,按照《研究生学位论文(研究报告)撰写格式规范》的要求,独立完成学位论文,导师应对硕士生学位论文严格审查,把好质量关。

(三)学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行,其中评阅、答辩考评组以校内专家为主,但至少应有一位相关行业具有高级职称(或相当水平)的专家。

生物医学工程领域 全日制工程硕士研究生培养方案

(专业代码:085230)

本学科是工程技术向医学和生命科学渗透的结晶。主要研究领域有: 医学成像理论与技术; 脑一机接口技术; 生物医学信号检测与处理技术; 医卫领域信息化工程; 物理场的生物效应及应用和生物医学仪器等。它的发展与人类的健康直接相关,是一个典型的交叉科学技术领域。

一、培养目标

本学科硕士获得者应掌握电路设计和信号处理的基本理论及技术、具有较好的计算机软硬件技术知识,和人体解剖生理学等生物医学方面的基础知识,以及生物医学信号形成机理及医学图像的成像原理及特点,掌握一门外国语。具备独立从事生物医学信号/影像的采集与处理、生物医学电子仪器的设计开发及相关基础研究的能力,能胜任在科研单位、生产部门及高等院校从事研究、开发、教学工作。学位获得者应政治合格,热爱祖国,献身于伟大的社会主义建设事业。

二、研究方向

- 1. 脑电与脑一机接口技术
- 3. 生物医学信号与信息处理
- 5. 医学物理技术
- 7. 神经科学仪器与软件
- 9. 内分泌生理学

- 2. 医学成像与图像处理技术
- 4. 医学信息技术
 - 6. 智能化医学仪器(医用 CT 技术、医用超声技术)
 - 8. 细胞信号传导与基因表达调控
 - 10. 生物制药技术

三、培养方式和学习年限

全日制硕士专业学位研究生采用课程学习、实践教学和学位论文相结合的培养方式。通过课程 学习、实践教学和论文研究工作,掌握某一特定职业领域相关理论知识,培养解决实际问题的能力。 硕士研究生的培养采用校内外双导师共同指导的方式。

全日制硕士专业学位研究生学制为三年。提前完成硕士学业者,可申请提前半年毕业;若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过四年。

四、学分要求与课程学习要求

总学分要求不低于 36 学分,其中课程总学分不低于 25 学分,实践教学环节不低于 6 学分,必修环节不低于 5 学分;课程学分中,学位课要求不低于 16 个学分,公共基础课必修,基础课至少选修 1 门,多选一课程至少选修 1 门。

学位课可以代替非学位课,但非学位课不能代替学位课。对于跨学科专业录取的硕士生,要求 补修相应专业本科核心课程至少2门,通过导师考核后,才能选修专业课。

研究生导师负责指导研究生制定个人培养计划和选课。导师指导研究生自学与研究课题有关的 专业知识,并列入个人培养计划,但不计学分。校外导师参与课程学习、实践教学环节的指导工作。

五、课程设置

全日制硕士专业学位研究生课程划分为学位课、非学位课、实践教学环节、必修环节四部分。

生物医学工程领域 全日制工程硕士研究生课程设置

	类别	课程编号	课程名称	学时	学分	开课 学期	考核 方式	备注
		16005004	中国特色社会主义理论与实践研究	36	2	1	考试	
	公共	13005014	硕士研究生学位英语	90	3	1/2	考试	
	基础课	11005001	工程伦理与学术道德	20	1	1/2	考试	v4-
		11005002	知识产权与信息检索	20	1	1/2	考试	二选一
学	甘 7月2日	10005001	矩阵理论	60	3	1	考试	
位课	基础课	10006003	图论及应用	60	3	1	考试	
		09027001	生物物理学	40	2	1	考试	
	专业	09017002	医学成像原理	40	2	1	考试	
	基础课	09017005	生物医学信号处理	40	2	2	考试	
		09016001	神经网络方法	40	2	2	考试	
		09026005	高级分子生物学	40	2	2		
		09016002	神经信息学基础	40	2	1		
		09016005	医学信息系统设计	20 1	2			
	老小	09027009	计算机辅助药物设计	30	1.5	2		
非	专业	09026008	系统生物学	20 20	1	2		
 学	选修课	09016006	统计检验方法		1	2		
位		09017006	认知心理学	20	1	2		
选		09017008	计算神经科学导论	20	1	2		
修课		09027007	Perl 生物信息学编程	20	1	2		
床		16005011	自然辨证法概论	18	1	2	考查	→ \A-
	廿 /山	16005012	马克思主义与社会科学方法论	18	1	2	考查	二选一
	其他 选修课		实验课程					
	起廖怀		前沿知识讲座					
			跨专业领域或跨学科相关课程					
		09015001	生物医学信号测量实验	20	1	1		详见
	践教	09415001	基于心电的嵌入式生理信号采集系统设计	20	1	2		第
	学环节	09415003	计算机辅助药物设计综合实验	20	1	1		" <u>六</u> "
		00405XXX	实践教学环节					点说
97	ねエナー	其他要求	工程/项目设计、知名企业认证考试等					973
业	修环节		详见第"六"点说明					
践	等学科专业	2领域考生	数字信号处理		太江	当八		
7	补修本科	核心课程	医学成像技术 生物医学信号处理		小打	学分		
			工物医子信与处理					

六、实践教学环节和必修环节

(一)实践教学环节:这是专业学位研究生培养过程中重要的特色培养环节,实践教学可采用集中实践与分段实践相结合的方式进行。可通过实践教学课程、基地实践、工程/项目设计、认证考试等方式完成,其中实践教学课程、基地实践为必修项目。

实践教学课程主要指突出实践训练的实验课程,全校可通选,完成者取得相应学分。

基地实践为 2-4 个学分,按照实践时间 1-3 个月、3-6 个月、6-12 个月及以上作为实践时间单位,分别认定为 2 学分、3 学分和 4 学分。要求提交实践总结报告,实践基地(单位)就学生提交的报告给予相关支撑书面材料证明,根据实际实践时间,经导师审核通过,可获得相应学分。

进行工程/项目设计者,导师负责审核把关,通过者可获得1个学分。

知名企业认证考试:通过由研究生院认定的知名企业的认证考试,并获得证书者,可获得相应学分。

- (二)必修环节包含五个部分,要求研究生分别完成以下内容:
- 1. 素质教育公选课(课程编号: 00005XXX): 重点加强研究生综合素质教育,研究生可选修 1门,考核通过后获 1个学分。
 - 2. 教学实践、创新创业与社会实践可以二选一,完成后获得相应学分。
- (1) 教学实践(课程编号: 00006001, 学时 40): 主要是面向本科生的教学辅导工作,如在导师或任课教师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等,工作量不少于 40 学时。由导师或任课教师给出评语,学院给予书面证明,报学生所在学院备案。完成者获得 1 学分。
- (2) 创新创业与社会实践(课程编号: 00006002): 创新创业与社会实践学分认定范围主要包含五大类,即: 竞赛获奖、知识产权、科技成果转化、自主创业、社会实践等。研究生完成五类中任意一种类别,均可获得相应学分。具体界定如下:

竞赛获奖:指研究生参加由政府教育行政主管部门、专业学术团体、专业教学指导委员会组织 主办的国际、国家级学术科技类、创新创业类、文化艺术体育类等竞赛并获得省部级及以上奖项可 获得1个学分。

知识产权:包括发明专利、实用新型专利等,如外观设计专利、计算机软件著作权、集成电路 布图专有权等。完成后可申请1个学分。

科技成果转化:指研究生的专利以实施许可、技术转让或技术入股方式进行技术转移等。完成 后可申请 1 个学分。

自主创业:指研究生在校学习期间自主创建公司(应与所学专业相关),完成公司登记注册并顺利运营。完成后可申请1个学分。

社会实践:主要指研究生运用所学知识到地方政府、科研院所、企事业单位等开展基层挂职及调研、公益支教、扶贫服务、技术合作等实践项目。完成后根据要求提交总结或报告,并附相关证明材料,报所在学院备案。社会实践项目不得与联合培养基地专业实践项目重复。完成后可获得1个学分。

- 3. 学术活动(课程编号: 00006003, 1 个学分): 为了拓宽研究生的知识面,规定硕士生在校期间必须参加十次以上校内外学术活动,有举办学术单位的公章为依据,报学生所在学院备案,完成者获得1学分。
- 4. 人文教育与学术交流(课程编号: XX66XXXX): 硕士研究生在校期间必须参加每年 6 月举办的"人文教育与学术交流月"活动。参加讲座两次以上,有举办学术单位的公章为依据,提交

学习报告,导师审核签字,计入学术活动;完成人文教育与学术交流课程至少1门,完成者获得相应必修环节学分。

5. 论文开题报告及文献阅读综述(课程编号: 00006009): 指研究生在学位论文开题之前,必须阅读本学科前沿国内外文献 20 篇以上,其中外文文献 10 篇以上,写出 4000 字左右的文献综述报告,附上不少于 1000 字的英文摘要;综述报告应提出值得研究和解决的学术或技术问题,并在此基础上完成相应的开题报告,完成者获得 1 学分。

七、学位论文

(一) 硕士学位论文的基本要求

1. 选提要求

选题应直接来源于生物医学工程生产实际或具有明确的生物医学工程背景,其研究成果要有实际应用价值,拟解决的问题要有一定的技术难度和工作量,选题要具有一定的理论深度和先进性。 具体可以在以下方面选取:

- (1) 生物医学中迫切需要解决的工程问题。
- (2) 生物医学工程设计与设施。
- (3) 生物医学技术攻关、技术改造、技术推广与应用。
- (4) 医疗器械新产品、新设备、新工艺的研制与开发。
- (5) 引进、消化、吸收和应用国外先进医学技术项目。
- (6) 医院管理项目的规划或研究。
- (7) 医院的信息管理、传输及处理技术。
- (8) 与医疗器械、生物材料等有关的标准、政策、法规。
- (9) 其他与生物医学课程相关的课题。

2. 形式及内容要求

生物医学工程领域工程硕士专业学位可以是设计类和产品开发类论文,如产品研发、工程设计等,也可以是研究类学位论文,如应用研究论文,还可以是针对生物医学工程管理和技术的软科学论文,如项目管理、调查研究报告等。

- (1)产品研发:是指来源于生物医学工程生产实际的新产品研发、关键部件研发,以及对国内外先进产品的引进消化在研发,包括各种软、硬件产品的研发。论文内容包括绪论、研发理论及分析、实施与性能测试以及总结等部分。要求对所研发的产品进行需求分析,确定性能或技术指标;阐述设计思路与技术原理,进行方案设计、详细设计、分析计算或仿真等;对产品或其核心部分进行试制、性能测试等。
- (2) 工程设计:是指综合运用生物医学工程理论、科学方法、专业知识与技术手段、技术经济、人文和环保知识,对具有较高技术含量的工程项目、大型设备、装备及其工艺等问题从事的设计。设计方案科学合理,数据准确,符合国家、行业标准和规范,同时符合技术经济、环保和法律要求;论文内容包括绪论、设计报告、总结及必要的附件等部分;可以是工程图纸、设计作品、工程技术方案、工艺方案等,可以用文字、图纸、表格、模型等方式表述。
- (3)应用研究:是指直接来源于生物医学工程实际问题或具有明确的生物医学工程应用背景,综合运用基础理论与专业知识、科学方法和技术手段开展应用性研究。研究成果能解决特定工程实际问题,具有实际应用价值。论文内容主要包括绪论、研究与分析、应用或验证以及总结等部分。要求综合运用生物医学工程基础理论和专业知识对所研究的命题进行理论分析,仿真或实验研究。
 - (4) 工程与项目管理:项目管理是指对生物工程领域的一次性大型复杂任务的管理,研究的

问题可以涉及项目生命周期各个阶段或者项目管理各个方面,也可以是企业项目化管理、项目组合管理或多项目管理问题。工程管理是指以自然科学和工程技术为基础的生物医学工程领域的工程任务,可以研究工程的各职能管理问题,也可以涉及工程的各方面技术管理问题等。论文内容主要包括绪论、理论方法综述、解决方案、案例分析或可行性分析以及总结等部分。要求就生物医学工程行业或企业的工程与项目管理中存在的实际问题开展研究,并具有一定的广度和深度;对国内外解决该类问题的具有代表性的管理方法及相关领域的方法进行分析、选择或必要的改进。对该类问题的解决方案进行设计,并对该解决方案进行案例分析和验证,或进行有效性和可行性分析。

(5)调研报告:是指对生物医学工程及相关领域的工程和技术命题进行调研,通过调研发现本质,找出规律,给出结论,并针对存在或可能存在的问题提出建议或解决方案。论文内容包括绪论、调研方法、资料和数据分析、对策或建议以及总结等部分。既要包含被调研对象的国内外现状及发展趋势,又要调研影响该命题的内、外在因素,并对其进行深入剖析;通过科学论证,给出明确的调研结论,提出相应的对策及建议。

3. 水平要求

- (1) 学位论文工作有一定的技术难度和深度,论文成果具有一定的先进性和实用性。
- (2) 学位论文工作应在导师指导下独立完成,论文工作量饱满。
- (3) 学位论文中的文献综述应对选题所涉及的工程技术问题或研究课题的国内外状况有清晰的描述与分析。
- (4) 学位论文的正文应综合应用基础理论、科学方法、专业知识和技术手段对所解决的科研问题或工程实际问题进行分析研究,并能在某些方面提出独立见解。
- (5) 学位论文撰写要求概念清晰,逻辑严谨,结构合理,层次分明,文字通畅,图文清晰,概念清楚,数据可靠,计算正确,格式规范。

(二)硕士学位论文工作

硕士学位论文的选题应对科技和社会发展有一定的价值。在导师指导下确定选题和开展学位论文工作,校外导师参与论文环节的指导工作。

1. 开题报告

- (1) 开题报告时间。硕士生在确定选题,大量阅读文献的基础上,应在入学的第三学期末之前, 最迟应在第四学期末之前完成开题报告。
- (2) 开题报告方式。开题报告应以报告会的形式,在教(科)研室或以上范围公开举行;开题报告会须有本学科及相近学科3位副教授或相当专业技术职称以上的专家组成考评组,考评组以校内专家为主,至少应有一位来自相关行(企)业或工程部门的专家。考评组对研究生开题作出考评意见。
- (3) 开题报告内容。依据《开题报告表》的要求,做开题报告。在开题报告会后,及时完成《开题报告表》,在学院审核后,由研究生科保存,以备检查。
- (4) 若开题报告没能通过,在导师的指导下 3 个月后才能申请重新开题。两次开题报告不过者,应终止硕士生的学业。
 - (5) 因正当原因改变选题,须按上述要求重做开题报告。
 - (6) 论文开题通过1年后方能申请学位论文答辩。

2. 论文工作

硕士生应在校内外双导师指导下按计划按时完成学位论文工作。

论文工作的时间应不少于1年,论文工作期间应每周一次向导师汇报研究进展;研究生到校外单位做学位论文,要经校内导师、学院批准,并保证每月一次向导师汇报研究进展,按时完成相

应工作。

3. 学位论文的撰写

硕士生在导师指导下,按照《研究生学位论文(研究报告)撰写格式规范》的要求,独立完成学位论文,导师应对硕士生学位论文严格审查,把好质量关。

(三)学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行,其中评阅、答辩考评组以校内专家为主,但至少应有一位相关行业具有高级职称(或相当水平)的专家。

工业工程领域 全日制工程硕士研究生培养方案

(专业代码:085236)

工业工程 (Industrial Engineering 简称 IE) 是一门工程技术与管理技术交叉的综合性工程学科。它以降低成本、提高质量和生产率以及实现可持续发展为导向,采用系统化、专业化和科学化的方法,综合运用多种工程技术和管理技术对资源、技术和信息所组成的集成系统进行设计、改善和配置,使之成为更为有效、更为合理的综合优化系统,并对系统的运行及效果进行鉴定、预测和评价。

工业工程具有鲜明的工程属性,它具有工程学科利用自然科学知识和技术进行观察、实验、研究和设计等功能;又不同于一般工程学科,它还应用社会科学及经济管理知识、以工程技术的手段和方法主要解决综合性工程技术问题和管理问题。因此,工业工程也具有明显的管理特征。

对我国产业界和学术界来说工业工程还是一门新兴的学科,目前引起了广泛的关注和重视。 工业工程的应用和推广将促使我国工业企业、特别是制造业面对当代生产经营环境的变化,在促 使企业降低成本、增加市场竞争力、提高企业经济效益、实现经济增长方式的转变等方面将起到 重要作用。

一、培养目标

- 1. 工业工程全日制硕士专业学位获得者应较好地掌握建设具有中国特色的社会主义理论;拥护党的基本路线、方针和政策;热爱祖国、遵纪守法,具有良好的职业道德,积极为我国的社会主义建设服务。
- 2. 工业工程全日制硕士专业学位获得者应具有坚实的基础理论和系统的专门知识,懂得现代经济和现代管理理论,并能综合运用这些理论和方法分析、解决生产系统(广义的企业)出现的实际问题。
- 3. 工业工程全日制硕士专业学位获得者应是掌握解决工程问题的先进技术方法和现代技术手段,掌握现代管理技术和方法,具有独立承担工程技术和工程管理工作的能力,并掌握一门外语的高级复合型人才。

二、研究方向

- 1. 物流与供应链管理
- 2. 企业信息化
- 3. 战略管理与流程再造
- 4. 质量管理与可靠性工程
- 5. 产品开发、策划与创新工程

三、培养方式和学习年限

全日制硕士专业学位研究生采用课程学习、实践教学和学位论文相结合的培养方式。通过课程 学习、实践教学和论文研究工作,掌握某一特定职业领域相关理论知识,培养解决实际问题的能力。 硕士研究生的培养采用校内外双导师共同指导的方式。

全日制硕士研究生学制为三年。提前完成硕士学业者,可申请提前半年毕业;若因客观原因 不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过四年。

四、课程学习与学分基本要求

总学分要求不低于 36 个学分,其中课程总学分不低于 25 学分,实践教学环节不低于 6 学分,必修环节不低于 5 学分;课程学分中,学位课要求不低于 16 学分。公共基础课必修,多选一课程至少修 1 门。

允许在导师指导下、在相同学科门类或专业领域之间选修 1~2 门学位课作为本专业的学位课。针对实践教学环节中开出的实验课程,可根据需要、进行跨学院跨专业选修。

学位课可以代替非学位课,但非学位课不能代替学位课。对于跨学科专业录取的硕士生,要求 补修相应专业本科核心课程至少 2 门,通过导师考核后,才能选修专业课。

研究生导师负责指导研究生制定个人培养计划和选课。导师指导研究生自学与研究课题有关的知识,并列入个人培养计划,但不计学分。校外导师参与课程学习、实践教学环节的指导工作。

五、课程设置

全日制硕士专业学位课程划分为学位课、非学位课、实践教学环节、必修环节四部分。

工业工程硕士 全日制专业学位硕士研究生课程设置

孝	き别	课程编号	课程名称	学时	学分	开课 学期	考核方式	备注
		16005004	中国特色社会主义理论与实践	36	2	1	考试	
	公共	13005014	硕士研究生学位英语	90	3	1/2	考试	
	基础课	11005001	工程伦理与学术道德	20	1	1/2	考试	一 24.
		11005002	知识产权与信息检索	20	1	1/2	考试	二选一
学位	基础课	10005002	数理统计学	40	2	2	考试	
课	圣仙 床	11015025	应用随机过程	48	3	2	考试	
		11025022	运筹学(Ⅱ)	48	3	1	考试	
	专业 基础课	11056023	创新管理研究	40	2.5	2	考试	
		11036023	战略管理研究	48	3	2	考试	
		11056021	组织管理研究	40	2.5	2	考试	
		11026001	库存理论	40	2.5	1		
	-	11026022	供应链设计与管理	40	2.5	2		
	专业 选修课	11076026	金融工程学	40	2.5	2		
非	远修床	11026034	数据挖掘与信息管理	48	3	2		
学位		11035022	公司财务研究	48	3	2		
课		16005011	自然辨证法概论	18	1	2		一 沖.
	其他	16005012	马克思主义与社会科学方法论	18	1	2		二选一
	选修课		实验课程					
		11026025	管理科学前沿专题	24	1.5	2		

	11416012	沙盘企业管理模拟实训	24	1.5	1		
	11436012	供应链管理决策模拟实验	32	2	1		
实践教 学环节	11436013	物流设计规划与现代物流设备 认知实验	24	1.5	1	6	
子 外 T	11416011	企业经营决策模拟训练	24	1.5	1		
	11426012	组织与人力资源管理专项训练	24	1.5	1		
	其他要求	工程设计、基地实训等					
必修环节		详见第"六"点说明					
rb ツバオ ナ 川	北山 山杨	运筹学([)					
一 跨学科专业 本科核。	•	运营管理		不计	十学分		
十十十八八	口 少个/主	中级微观经济学					

六、实践教学环节和必修环节

(一)实践教学环节:这是专业学位研究生培养过程中重要的特色培养环节,实践教学可采用集中实践与分段实践相结合的方式进行。可通过实践教学课程、基地实践、工程/项目设计、认证考试等方式完成,其中实践教学课程、基地实践为必修项目。

实践教学课程主要指突出实践训练的实验课程,全校可通选,完成者取得相应学分。

基地实践为 2-4 个学分,按照实践时间 1-3 个月、3-6 个月、6-12 个月及以上作为实践时间单位,分别认定为 2 学分、3 学分和 4 学分。要求提交实践总结报告,实践基地(单位)就学生提交的报告给予相关支撑书面材料证明,根据实际实践时间,经导师审核通过,可获得相应学分。

进行工程/项目设计者,导师负责审核把关,通过者可获得1个学分。

知名企业认证考试:通过由研究生院认定的知名企业的认证考试,并获得证书者,可获得相应学分。

- (二)必修环节包含五个部分,要求研究生分别完成以下内容:
- 1. 素质教育公选课(课程编号: 00005XXX): 重点加强研究生综合素质教育,研究生可选修 1门,考核通过后获 1 个学分。
 - 2. 教学实践、创新创业与社会实践可以二选一,完成后获得相应学分。
- (1) 教学实践(课程编号: 00006001, 学时 40): 主要是面向本科生的教学辅导工作,如在导师或任课教师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等,工作量不少于 40 学时。由导师或任课教师给出评语,学院给予书面证明,报学生所在学院备案。完成者获得 1 学分。
- (2) 创新创业与社会实践(课程编号: 00006002): 创新创业与社会实践学分认定范围主要包含五大类,即: 竞赛获奖、知识产权、科技成果转化、自主创业、社会实践等。研究生完成五类中任意一种类别,均可获得相应学分。具体界定如下:

竞赛获奖:指研究生参加由政府教育行政主管部门、专业学术团体、专业教学指导委员会组织 主办的国际、国家级学术科技类、创新创业类、文化艺术体育类等竞赛并获得省部级及以上奖项可 获得1个学分。

知识产权:包括发明专利、实用新型专利等,如外观设计专利、计算机软件著作权、集成电路 布图专有权等。完成后可申请1个学分。

科技成果转化: 指研究生的专利以实施许可、技术转让或技术入股方式进行技术转移等。完成

后可申请1个学分。

自主创业:指研究生在校学习期间自主创建公司(应与所学专业相关),完成公司登记注册并顺利运营。完成后可申请1个学分。

社会实践:主要指研究生运用所学知识到地方政府、科研院所、企事业单位等开展基层挂职及调研、公益支教、扶贫服务、技术合作等实践项目。完成后根据要求提交总结或报告,并附相关证明材料,报所在学院备案。社会实践项目不得与联合培养基地专业实践项目重复。完成后可获得1个学分。

- 3. 学术活动 (课程编号: 00006003, 1 个学分): 为了拓宽研究生的知识面,规定硕士生在校期间必须参加十次以上校内外学术活动,有举办学术单位的公章为依据,报学生所在学院备案,完成者获得1学分。
- 4. 人文教育与学术交流(课程编号: XX66XXXX): 硕士研究生在校期间必须参加每年 6 月举办的"人文教育与学术交流月"活动。参加讲座两次以上,有举办学术单位的公章为依据,提交学习报告,导师审核签字,计入学术活动;完成人文教育与学术交流课程至少 1 门,完成者获得相应必修环节学分。
- 5. 论文开题报告及文献阅读综述 (课程编号: 00006009): 指研究生在学位论文开题之前,必须阅读本学科前沿国内外文献 20 篇以上,其中外文文献 10 篇以上,写出 4000 字左右的文献综述报告,附上不少于 1000 字的英文摘要;综述报告应提出值得研究和解决的学术或技术问题,并在此基础上完成相应的开题报告,完成者获得 1 学分。

七、学位论文

(一)硕士学位论文的基本要求

1. 选题要求

论文选题应源于生产实际,或具有明确工程背景与应用价值,具有一定技术难度,能体现所学知识的综合运用,有足够工作量;论文研究应体现作者的知识更新及在具体工程应用中的新意,论文研究结果能对行业,特别是所在单位的技术进步起到促进作用。具体可以在以下几个方面选取:

- (1) 技术攻关, 技术改造, 技术推广与应用;
- (2) 新产品、新设计、新工艺、新材料、新应用软件的研制与开发;
- (3) 引进、消化、吸收和应用国外先进技术项目;
- (4) 基础性应用研究或预研项目;
- (5) 工程设计与实施项目;
- (6) 较为完整的工程技术或工程管理项目的规划或研究;
- (7) 企业的标准化项目。
- 2. 形式要求

机械工程领域工程硕士专业学位的论文形式可以多样化,既可以是研究类学位论文,如应用研究论文,也可以是设计类和产品开发论文,如产品研发、工程设计等,还可以是软科学论文,如调查研究报告、工程管理论文等。

产品研发:来源于机械领域生产实际的新产品研发、关键部件研发、以及对国内外先进产品的引进消化再研发,包括了各种软、硬件产品的研发。内容包括绪论、研发理论及分析、实施与性能测试及总结等部分。

工程设计: 是指综合运用机械工程理论、科学方法、专业知识与技术手段、技术经济、人文和环保知识,对具有较高技术含量的工程项目、大型设备、装备及其工艺等问题从事的设计。设计方

案科学合理、数据准确,符合国家、行业标准和规范,同时符合技术经济、环保和法律要求。内容包括绪论、设计报告、总结及必要的附件;可以是工程图纸、工程技术方案、工艺方案等,可以用文字、图纸、表格、模型等表述。

应用研究:是指直接来源于机械工程实际问题或具有明确的机械工程应用背景,综合运用基础理论与专业知识、科学方法与技术手段开展应用性研究。内容包括绪论、研究与分析、应用和检验及总结等部分。

工程/项目管理:项目管理是指机械领域一次性大型复杂工程任务的管理,研究的问题可以涉及项目生命周期的各个阶段或者项目管理的各个方面,也可以是企事业项目化管理、项目组合管理或多项目管理问题。工程管理是指以自然科学和机械工程技术为基础的工程任务的管理,可以研究机械工程的各职能管理问题,也可以涉及机械工程各方面的技术管理问题等。要求本领域问题和项目管理中存在的实际问题开展研究,对国内外解决该类问题的具有代表性的管理方法及相关领域的方法进行分析、选择或必要改进。对该类问题的解决方案进行设计,并对该解决方案进行案例分析和验证,或进行有效性和可行性分析。

调研报告:是指对机械及相关领域的工程和技术命题进行调研,通过调研发现本质,找出规律、给出结论,并针对存在或可能存在的问题提出建议或解决方案。包括绪论、调研方法、资料和数据分析、对策或建议及总结等部分。既要对被调研对象的国内外现状及发展趋势进行分析,又要调研该命题的内在因素及外在因素,并对其进行深入剖析。

3. 水平要求

机械领域工程硕士专业学位的学位论文的水平要求体现在以下方面:

- (1) 学位论文工作有一定的技术难度和深度,论文成果具有一定的先进性和实用性;
- (2) 学位论文工作应在导师指导下独立完成,论文工作量饱满;
- (3) 学位论文中的文献综述应对选题所涉及的工程技术问题或研究课题的国内外状况有清晰的描述与分析:
- (4) 学位论文的正文应综合应用基础理论、科学方法、专业知识和技术手段对所解决的科研问题或工程实际问题进行分析研究,并能在某些方面提出独立见解。
- (5) 学位论文撰写要求概念清晰,逻辑严谨,结构合理,层次分明,文字通畅、图表清晰、概念清楚、数据可靠、计算正确。

(二)硕士学位论文工作

硕士学位论文的选题应对科技和社会发展有一定的价值。在导师指导下确定选题和开展学位 论文工作,校外导师参与论文环节的指导工作。

1. 开题报告

- (1) 开题报告时间。硕士生在确定选题,大量阅读文献的基础上,应在入学的第三学期末之前,最迟应在第四学期末之前完成开题报告。
- (2) 开题报告方式。开题报告应以报告会的形式,在教(科)研室或以上范围公开举行;开题报告会须有本学科及相近学科3位副教授或相当专业技术职称以上的专家组成考评组,考评组以校内专家为主,至少应有一位来自相关行(企)业或工程部门的专家。考评组对研究生开题作出考评意见。
- (3) 开题报告内容。依据《开题报告表》的要求,做开题报告。在开题报告会后,及时完成 《开题报告表》,交学院研究生科保存,以备检查。
- (4) 若开题报告没能通过,在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者,应终止硕士生的学业。

- (5) 因正当原因改变选题,须按上述要求重做开题报告。
- (6) 论文开题通过1年后方能申请学位论文答辩。

2. 论文工作

硕士生在导师指导下按计划按时完成学位论文工作。

论文工作的时间应不少于1年,论文工作期间应每周一次向导师汇报研究进展;研究生到校外单位做学位论文,要经校内导师、学院批准,并保证每月一次向导师汇报工作进展,按时完成相应工作。

3. 学位论文的撰写

硕士生在导师指导下,按照《研究生学位论文(研究报告)撰写格式规范》的要求,独立完成学位论文,导师应对硕士生学位论文严格审查,把好质量关。

(三)学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行,其中评阅、答辩考评组以校内专家为主,但至少应有一位相关行业具有高级职称(或相当水平)的专家。

物流工程领域 全日制工程硕士研究生培养方案

(专业代码:085240)

随着经济一体化和计算机通讯技术的不断发展,使物流业迅速成为在全球具有巨大潜力和发展空间的新兴服务产业,并成为衡量一个国家或地区经济发展水平、产业发展环境、企业竞争力的重要标志之一。本专业以物流系统为研究对象,分析并解决物流系统的规划设计与资源优化配置、物流运作过程的计划与控制以及经营管理的科学问题。我国把物流业列为十大振兴产业之一,但我国现代物流业尚处在起步发展阶段,物流人才匮乏成为物流产业发展的最大制约,是物流业发展的主要"瓶颈"之一。因此培养满足企业与社会各个方面所需要的物流工程专业高级人才迫在眉睫。

我校全日制物流工程专业学位硕士研究生培养所依托的经济与管理学院。近年承担多项国家、部省市项目和多项大型企业物流咨询与规划项目;建有物流管理实验室和物流实习基地;是国内率先开展物流工程专业学位硕士以及物流管理专业本科、硕士、博士培养的院校之一,培养的各类物流管理专业毕业生深受社会欢迎。

一、培养目标

本专业培养系统掌握物流设施应用、系统规划设计与评价以及物流管理的先进技术与方法,能够独立负担物流技术和运作管理工作的应用性、复合型的物流技术和物流高级管理人才。具备熟练运用现代物流管理与研究所必要的分析方法和工具解决实际问题的能力,能在各类工商企业和物流企业从事企业管理、物流管理、物流系统分析、物流设施规划与设计等工作,在政府部门从事物流园区和工业园区物流规划及业务管理等相关工作,也可以在高校和科研机构从事企业管理、物流管理等教学、研究及咨询服务等工作的高级专门人才。

二、研究方向

- 1. 国际物流
- 3. 电商物流
- 5. 第三方物流

- 2. 行业物流
- 4. 区域与城市物流

三、培养方式和学习年限

全日制硕士专业学位研究生采用课程学习、实践教学和学位论文相结合的培养方式。通过课程 学习、实践教学和论文研究工作,掌握某一特定职业领域相关理论知识,培养解决实际问题的能力。 硕士研究生的培养采用校内外双导师共同指导的方式。

全日制硕士专业学位研究生学制为三年。提前完成硕士学业者,可申请提前半年毕业; 若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过四年。

四、学分要求与课程学习要求

总学分要求不低于 41 个学分,其中课程学分不低于 28 学分,实践教学环节不低于 8 学分,必修环节不低于 5 学分。课程学分中学位课不低于 18 学分,公共基础课必修,基础课至少选修 1 门, 8 洗一课程至少选修 1 门。

允许在导师指导下、在相近学科门类与专业领域之间跨学科选修 1~2 门学位课作为本学科的学

位课。针对实践教学环节中开出的实验课程,可根据专业需要、进行跨学院跨专业领域选修。

学位课可以代替非学位课,但非学位课不能代替学位课。对于跨学科专业录取的硕士生,要求 补修相应专业本科核心课程至少 2 门,通过导师考核后,才能选修专业课。

研究生导师负责指导研究生制定个人培养计划和选课。导师指导研究生自学与研究课题有关的专业知识,并列入个人培养计划,但不计学分。校外导师参与课程学习、实践教学环节的指导工作。

五、课程设置

全日制硕士专业学位研究生课程划分为学位课、非学位课、实践教学环节、必修环节四部分。

物流工程领域全日制工程硕士研究生课程设置

	类别	课程编号	课程名称	学时	学分	开课 学期	考核 方式	备注
		16005004	中国特色社会主义理论与实践研究	36	2	1	考试	
	公共	13005014	硕士研究生学位英语	90	3	1/2	考试	
	基础课	11005001	工程伦理与学术道德	20	1	1/2	考试	二选一
3)7.		11005002	知识产权与信息检索	20	1	1/2	考试	
学位	基础课	11025023	数据分析与决策	32	2	2	考试	
课	坐叫从	11015025	应用随机过程	48	3	2	考试	
		11015021	高级微观经济学	40	2.5	1	考试	
	专业	11025025	物流管理	40	2.5	1	考试	
	基础课	11035024	管理研究方法	40	2.5	1	考试	
		11026022	供应链设计与管理	40	2.5	2	考试	
	专业 1	11026021	库存理论	40	2.5	1		
		11026023	服务管理	32	2	1		
非		11026028	物流保险	32	2	2		
学	起廖怀	11026030	电子商务与网络营销	40	2.5	2		
位		11026032	物流设施规划与设计	40	2.5	2		
选		16005011	自然辨证法概论	18	1	2	考查	一姓.
修	++ /.1.	16005012	马克思主义与社会科学方法论	18	1	2	考查	二选一
课	其他 选修课		实验课程					
	起廖怀	11036001	管理科学前沿专题	24	1.5	2		
			跨专业领域或跨学科相关课程					
		11416011	企业经营决策模拟训练	24	1.5	1		
乭	实践教	11416012	沙盘企业管理模拟实训	24	1.5	1	0	详见第
7	学环节	11426012	组织与人力资源管理专项训练	24	1.5	1	8	"六"点
		11426013	项目管理案例分析	24	1.5	1		20 /4

类别	课程编号	课程名称	学时	学分	开课 学期	考核 方式	备注
	11436012	供应链管理决策模拟实验	32	2	1		
	11436013	物流设计规划与现代物流设备认知实验	24	1.5	1		
	00405XXX	实践教学环节					
	其他要求	工程设计、基地实训等					
必修环节		详见第"六"点说明					
跨学科专业等	领域考生补	电子商务物流管理	7		不计学分		
修本科核	心 课程	运营管理		/\\I	子刀		

六、实践教学环节和必修环节

(一)实践教学环节:这是专业学位研究生培养过程中重要的特色培养环节,实践教学可采用集中实践与分段实践相结合的方式进行。可通过实践教学课程、基地实践、工程/项目设计、认证考试等方式完成,其中实践教学课程、基地实践为必修项目。

实践教学课程主要指突出实践训练的实验课程,全校可通选,完成者取得相应学分。

基地实践为 2-4 个学分,按照实践时间 1-3 个月、3-6 个月、6-12 个月及以上作为实践时间单位,分别认定为 2 学分、3 学分和 4 学分。要求提交实践总结报告,实践基地(单位)就学生提交的报告给予相关支撑书面材料证明,根据实际实践时间,经导师审核通过,可获得相应学分。

进行工程/项目设计者,导师负责审核把关,通过者可获得1个学分。

知名企业认证考试:通过由研究生院认定的知名企业的认证考试,并获得证书者,可获得相应学分。

- (二)必修环节包含五个部分,要求研究生分别完成以下内容:
- 1. 素质教育公选课(课程编号: 00005XXX): 重点加强研究生综合素质教育,研究生可选修 1门,考核通过后获 1 个学分。
 - 2. 教学实践、创新创业与社会实践可以二选一,完成后获得相应学分。
- (1) 教学实践(课程编号:00006001,学时40):主要是面向本科生的教学辅导工作,如在导师或任课教师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等,工作量不少于40学时。由导师或任课教师给出评语,学院给予书面证明,报学生所在学院备案。完成者获得1学分。
- (2) 创新创业与社会实践(课程编号: 00006002): 创新创业与社会实践学分认定范围主要包含五大类,即: 竞赛获奖、知识产权、科技成果转化、自主创业、社会实践等。研究生完成五类中任意一种类别,均可获得相应学分。具体界定如下:

竞赛获奖:指研究生参加由政府教育行政主管部门、专业学术团体、专业教学指导委员会组织 主办的国际、国家级学术科技类、创新创业类、文化艺术体育类等竞赛并获得省部级及以上奖项可 获得1个学分。

知识产权:包括发明专利、实用新型专利等,如外观设计专利、计算机软件著作权、集成电路 布图专有权等。完成后可申请1个学分。

科技成果转化:指研究生的专利以实施许可、技术转让或技术入股方式进行技术转移等。完成 后可申请1个学分。 自主创业:指研究生在校学习期间自主创建公司(应与所学专业相关),完成公司登记注册并顺利运营。完成后可申请1个学分。

社会实践:主要指研究生运用所学知识到地方政府、科研院所、企事业单位等开展基层挂职及调研、公益支教、扶贫服务、技术合作等实践项目。完成后根据要求提交总结或报告,并附相关证明材料,报所在学院备案。社会实践项目不得与联合培养基地专业实践项目重复。完成后可获得1个学分。

- 3. 学术活动(课程编号: 00006003, 1 个学分): 为了拓宽研究生的知识面,规定硕士生在校期间必须参加十次以上校内外学术活动,有举办学术单位的公章为依据,报学生所在学院备案,完成者获得1学分。
- 4. 人文教育与学术交流(课程编号: XX66XXXX): 硕士研究生在校期间必须参加每年 6 月举办的"人文教育与学术交流月"活动。参加讲座两次以上,有举办学术单位的公章为依据,提交学习报告,导师审核签字,计入学术活动;完成人文教育与学术交流课程至少 1 门,完成者获得相应必修环节学分。
- 5. 论文开题报告及文献阅读综述(课程编号: 00006009): 指研究生在学位论文开题之前,必须阅读本学科前沿国内外文献 20 篇以上,其中外文文献 10 篇以上,写出 4000 字左右的文献综述报告,附上不少于 1000 字的英文摘要;综述报告应提出值得研究和解决的学术或技术问题,并在此基础上完成相应的开题报告,完成者获得 1 学分。

七、学位论文

- (一)硕士学位论文的基本要求
- 1. 选题要求

论文选题应源于生产实际,或具有明确工程背景与应用价值,具有一定技术难度,能体现所学知识的综合运用,有足够工作量;论文研究应体现作者的知识更新及在具体工程应用中的新意,论文研究结果能对行业,特别是所在单位的技术进步起到促进作用。具体可以在以下几个方面选取:

- (1) 技术攻关, 技术改造, 技术推广与应用;
- (2) 新产品、新设计、新工艺、新材料、新应用软件的研制与开发;
- (3) 引进、消化、吸收和应用国外先进技术项目;
- (4) 基础性应用研究或预研项目;
- (5) 工程设计与实施项目;
- (6) 较为完整的工程技术或工程管理项目的规划或研究;
- (7) 企业的标准化项目。
- 2. 形式要求

机械工程领域工程硕士专业学位的论文形式可以多样化,既可以是研究类学位论文,如应用研究论文,也可以是设计类和产品开发论文,如产品研发、工程设计等,还可以是软科学论文,如调查研究报告、工程管理论文等。

产品研发: 来源于机械领域生产实际的新产品研发、关键部件研发、以及对国内外先进产品的引进消化再研发,包括了各种软、硬件产品的研发。内容包括绪论、研发理论及分析、实施与性能测试及总结等部分。

工程设计:是指综合运用机械工程理论、科学方法、专业知识与技术手段、技术经济、人文和环保知识,对具有较高技术含量的工程项目、大型设备、装备及其工艺等问题从事的设计。设计方案科学合理、数据准确,符合国家、行业标准和规范,同时符合技术经济、环保和法律要求。内容

包括绪论、设计报告、总结及必要的附件;可以是工程图纸、工程技术方案、工艺方案等,可以用文字、图纸、表格、模型等表述。

应用研究:是指直接来源于机械工程实际问题或具有明确的机械工程应用背景,综合运用基础理论与专业知识、科学方法与技术手段开展应用性研究。内容包括绪论、研究与分析、应用和检验及总结等部分。

工程/项目管理:项目管理是指机械领域一次性大型复杂工程任务的管理,研究的问题可以涉及项目生命周期的各个阶段或者项目管理的各个方面,也可以是企事业项目化管理、项目组合管理或多项目管理问题。工程管理是指以自然科学和机械工程技术为基础的工程任务的管理,可以研究机械工程的各职能管理问题,也可以涉及机械工程各方面的技术管理问题等。要求本领域问题和项目管理中存在的实际问题开展研究,对国内外解决该类问题的具有代表性的管理方法及相关领域的方法进行分析、选择或必要改进。对该类问题的解决方案进行设计,并对该解决方案进行案例分析和验证,或进行有效性和可行性分析。

调研报告:是指对机械及相关领域的工程和技术命题进行调研,通过调研发现本质,找出规律、给出结论,并针对存在或可能存在的问题提出建议或解决方案。包括绪论、调研方法、资料和数据分析、对策或建议及总结等部分。既要对被调研对象的国内外现状及发展趋势进行分析,又要调研该命题的内在因素及外在因素,并对其进行深入剖析。

3. 水平要求

机械领域工程硕士专业学位的学位论文的水平要求体现在以下方面:

- (1) 学位论文工作有一定的技术难度和深度,论文成果具有一定的先进性和实用性;
- (2) 学位论文工作应在导师指导下独立完成,论文工作量饱满;
- (3) 学位论文中的文献综述应对选题所涉及的工程技术问题或研究课题的国内外状况有清晰的描述与分析;
- (4) 学位论文的正文应综合应用基础理论、科学方法、专业知识和技术手段对所解决的科研问题或工程实际问题进行分析研究,并能在某些方面提出独立见解。
- (5) 学位论文撰写要求概念清晰,逻辑严谨,结构合理,层次分明,文字通畅、图表清晰、概念清楚、数据可靠、计算正确。

(二)硕士学位论文工作

硕士生应在导师指导下确定选题和开展学位论文工作,校外导师参与论文环节的指导工作。

1. 开题报告

- (1) 开题报告时间。硕士生在确定选题,大量阅读文献的基础上,应在入学的第三学期末之前, 最迟应在第四学期末之前完成开题报告。
- (2) 开题报告方式。开题报告应以报告会的形式,在教(科)研室或以上范围公开举行;开题报告会须有本学科及相近学科 3 位副教授或相当专业技术职称以上的专家组成考评组,考评组以校内专家为主,至少应有一位来自相关行(企)业或工程部门的专家。考评组对研究生开题作出考评意见。
- (3) 开题报告内容。依据《开题报告表》的要求,做开题报告。在开题报告会后,及时完成《开题报告表》,在学院审核后,由研究生科保存,以备检查。
- (4) 若开题报告没能通过,在导师的指导下 3 个月后才能申请重新开题。两次开题报告不过者,应终止硕士生的学业。
 - (5) 因正当原因改变选题,须按上述要求重做开题报告。
 - (6) 论文开题通过1年后方能申请学位论文答辩。

2. 论文工作

硕士生应在校内外双导师指导下按计划按时完成学位论文工作。

论文工作的时间应不少于1年,论文工作期间应每周一次向导师汇报研究进展;研究生到校外单位做学位论文,要经校内导师、学院批准,并保证每月一次向导师汇报研究进展,按时完成相应工作。

3. 学位论文的撰写

硕士生在导师指导下,按照《研究生学位论文(研究报告)撰写格式规范》的要求,独立完成学位论文,导师应对硕士生学位论文严格审查,把好质量关。

(三)学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行,其中评阅、答辩考评组以校内专家为主,但至少应有一位相关行业具有高级职称(或相当水平)的专家。

药学硕士 全日制专业学位研究生培养方案

(专业代码:105500)

药学是医药卫生类专业,是医药体系中重要的组成部分,主要涉及药物的发现、研制、生产、应用等,以保证药物的安全有效,稳定可控。药学学科与人类健康密切相关,也涉及与医学、生物学、化学、信息学、经济学等多学科交叉领域。

本学科为国家卫生与计划生育委员会临床重点专科,为国家卫生与计划生育委员会临床药师及师资培训基地,现有团队中包括博士研究生导师 1 名,高级职称人员 30 余名,优秀的国内外博士 15 余人。建有 CFDA 登记的临床前研究机构、CFDA 临床试验研究机构 GCP I 期临床实验室、国家中医药管理局中药药理和中药制剂实验室(二级)、药物基因组检测实验室等实践平台,为开展研究生教学实践工作奠定了基础。

一、培养目标

培养掌握马克思主义原理和中国特色社会主义理论体系,具有良好的政治素养和职业道德,在 药物技术转化、临床使用、监管与生产流通等应用领域的高层次、应用型药学专门人才。

二、研究方向(培养方向、领域方向)

- 1. 临床药学
- 2. 药物研究与转化

三、培养方式和学习年限

全日制硕士专业学位研究生采用课程学习、实践教学和学位论文相结合的培养方式。通过课程 学习、实践教学和论文研究工作,掌握某一特定职业领域相关理论知识,培养解决实际问题的能力。 硕士研究生的培养采用校内外双导师共同指导的方式。

全日制硕士专业学位研究生学制为三年。提前完成硕士学业者,可申请提前半年毕业;若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过四年。

四、学分要求与课程学习要求

总学分要求不低于 35 个学分,其中课程总学分不低于 24 学分,实践教学环节不低于 6 分,必修环节不低于 5 学分;课程学分中,学位课要求不低于 15 个学分,公共基础课必修,基础课至少选修 1 门,多选一课程至少选修 1 门。

允许在导师指导下、在相近学科门类或专业领域之间选修 1~2 门学位课作为本专业的学位课。 针对实践教学环节中开出的实验课程,可根据需要、进行跨学院跨专业选修。

学位课可以代替非学位课,但非学位课不能代替学位课。跨学科专业录取的硕士研究生应至少 补修本专业本科核心课程 2 门,通过导师考核后,才能选修专业课。

研究生导师负责指导研究生制定个人培养计划和选课。导师指导研究生自学与研究课题有关的知识,并列入个人培养计划,但不计学分。校外导师参与课程学习、实践教学环节的指导工作。

五、课程设置

全日制硕士专业学位课程分为学位课、非学位课、实践教学环节、必修环节四部分。

药学硕士 全日制专业学位研究生课程设置

							十八十十	
	类别	课程编码	课程名称	学时	学分	开课 学期	考核 方式	备注
	公共	16005004	中国特色社会主义理论与实践研究	36	2	1	考试	
	基础课	13005014	硕士研究生学位英语	90	3	1/2	考试	
		21415008	临床药理学	40	2	1	考试	
	基础课	21415005	临床药学	40	2	1	考试	
		21016001	生物化学与分子生物学	60	3	1	考试	
学		21415002	药物政策与药事管理学方法论	20	1	1	考试	
位		21415004	临床药物治疗学	60	3	2	考试	
课		21416003	临床药学实践	40	2	2	考试	
	专业	21415007	个体化药物治疗	40	2	2	考试	
	基础课	21415010	药物现代评价方法	40	2	1	考试	
		21416004	药理研究技术与方法	40	2	1	考试	
		21416005	药物合成与制剂研究	40	2	1	考试	
		21416006	药学监护实践与方法	20	1	2	考试	
		21016002	医学统计学	40	2	1		
		21016003	临床科研设计	40	2	2		
	专业	21016004	医学实验动物学	40	2	1		
	选修课	09027009	计算机辅助药物设计	30	1.5	2		
		09016006	统计检验方法	20	1	2		
		09026007	高级细胞生物学	40	2	2		
		16005011	自然辨证法概论	18	1	2	考查	一姓.
	其他	16005012	马克思主义与社会科学方法论	18	1	2	考查	二选一
	选修课	21017001	学科前沿知识专题讲座	20	1	2		
			跨专业领域或跨学科相关课程					
		21415015	临床药学培训					VV 17 66
	实践教	21415016	药物研究与转化专业实践					详见第
	学环节	21415017	临床药学研究					"六"点说
	1 5.1.14	其他要求						明
业	必修环节		详见第"六"点说明					
		•	药理学					
	跨学科专	业考生	药剂学		不出	上当八		
	补休本科核	核心课程	药物化学		<i>ነ</i> ነባ	学分		
			药物分析					
							1	

六、实践教学环节和必修环节

(一)实践教学环节:这是专业学位硕士研究生在药学实践上重要的特色培养环节,实践教学采用集中实践与分段实践相结合的方式进行。实践教学环节(18个月)共6个学分,可通过临床药学实践(21415008)、临床药学研究(21415009)、药物研究与转化实践(21415010)中的一种方式完成。

临床药学实践是指在临床药学带教老师带教下,依次完成初级临床药学实践(6个月)、高级临床药学实践(6个月)、专科临床药学实践(6个月)的培训,并顺利通过临床药师实践技能考核,可取得6个学分。

临床药学研究是指在临床药学带教老师带教下,完成 6-12 个月的临床药学实践训练,并在导师指导下完成 1 项临床药学课题设计,并完成项目研究工作,考核合格,可取得 6 个学分。

药物研究与转化实践是指在导师指导下,逐步培养研究生的药学科研思维,最终完成2项临床药学课题设计,并完成项目研究工作,考核合格,可取得6个学分。

- (二)必修环节包含五个部分,要求研究生分别完成以下内容:
- 1. 素质教育公选课(课程编号: 00005XXX): 重点加强研究生综合素质教育,研究生可选修 1门,考核通过后获 1 个学分。
 - 2. 教学实践、创新创业与社会实践可以二选一,完成后获得相应学分。
- (1) 教学实践(课程编号: 00006001, 学时 40): 主要是面向本科生的教学辅导工作,如在导师或任课教师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等,工作量不少于 40 学时。由导师或任课教师给出评语,学院给予书面证明,报学生所在学院备案。完成者获得 1 学分。
- (2) 创新创业与社会实践(课程编号: 00006002): 创新创业与社会实践学分认定范围主要包含五大类,即: 竞赛获奖、知识产权、科技成果转化、自主创业、社会实践等。研究生完成五类中任意一种类别,均可获得相应学分。具体界定如下:

竞赛获奖:指研究生参加由政府教育行政主管部门、专业学术团体、专业教学指导委员会组织 主办的国际、国家级学术科技类、创新创业类、文化艺术体育类等竞赛并获得省部级及以上奖项可 获得1个学分。

知识产权:包括发明专利、实用新型专利等,如外观设计专利、计算机软件著作权、集成电路 布图专有权等。完成后可申请1个学分。

科技成果转化:指研究生的专利以实施许可、技术转让或技术入股方式进行技术转移等。完成 后可申请 1 个学分。

自主创业:指研究生在校学习期间自主创建公司(应与所学专业相关),完成公司登记注册并顺利运营。完成后可申请1个学分。

社会实践:主要指研究生运用所学知识到地方政府、科研院所、企事业单位等开展基层挂职及调研、公益支教、扶贫服务、技术合作等实践项目。完成后根据要求提交总结或报告,并附相关证明材料,报所在学院备案。社会实践项目不得与联合培养基地专业实践项目重复。完成后可获得1个学分。

- 3. 学术活动(课程编号: 00006003, 1 个学分): 为了拓宽研究生的知识面,规定硕士生在校期间必须参加十次以上校内外学术活动,有举办学术单位的公章为依据,报学生所在学院备案,完成者获得1学分。
- 4. 人文教育与学术交流(课程编号: XX66XXXX): 硕士研究生在校期间必须参加每年 6 月举办的"人文教育与学术交流月"活动。参加讲座两次以上,有举办学术单位的公章为依据,提交

学习报告,导师审核签字,计入学术活动;完成人文教育与学术交流课程至少1门,完成者获得相应必修环节学分。

5. 论文开题报告及文献阅读综述(课程编号: 00006009): 指研究生在学位论文开题之前,必须阅读本学科前沿国内外文献 20 篇以上,其中外文文献 10 篇以上,写出 4000 字左右的文献综述报告,附上不少于 1000 字的英文摘要;综述报告应提出值得研究和解决的学术或技术问题,并在此基础上完成相应的开题报告,完成者获得 1 学分。

七、学位论文

(一)硕士学位论文的基本要求

1. 选题要求

学位论文应选题得当,针对在实践过程中发现的问题实例,紧密结合药学及相关领域科技转化、药学服务及药学管理等实际问题,开展研究,从而达到解决实际问题的目的。同时论文应注重针对性、实用性,论文研究结果应对药学产业实际工作与发展具有一定的应用价值。

2. 学位论文形式和规范要求

学位论文可以是针对药学实践领域具有一定经济和社会效益的专题研究报告、调研报告、设计方案、产品研发、案(病)例分析、项目管理方案、技术改革方案等。论文完成者应对待解决的问题进行调查研究,制定、设计调查方案,收集资料,在现场实践的基础上,对存在的问题进行分析并提出合理对策。

3. 学位论文水平要求

学位论文应由学生在导师的指导下独立完成,研究内容与目的明确,工作量适中,研究方法运用得当,理论分析应和生产实践相结合,突出以解决实际问题为宗旨,能体现综合运用科学理论和方法技术解决药学产业领域中实际问题的能力并应在某方面提出独立见解。此外论文工作应有一定的技术难度和一定的经济效益、社会效益。同时学位论文必须具备科学性、合理性和严谨性,要做到结构合理,条理清晰,论述有据,逻辑性强,文字通顺,有说服力,并且书写规范,讨论深入,能显示出研究生已经达到培养目标的要求。

(二)硕士学位论文工作

硕士学位论文的选题应对科技和社会发展有一定的价值。在导师指导下确定选题和开展学位论文工作,校外导师参与论文环节的指导工作。

1. 开题报告

- (1) 开题报告时间。硕士生在确定选题,大量阅读文献的基础上,应在入学的第三学期末之前, 最迟应在第四学期末之前完成开题报告。
- (2) 开题报告方式。开题报告应以报告会的形式,在教(科)研室或以上范围公开举行; 开题报告会须有本学科及相近学科 3 位副教授或相当专业技术职称以上的专家组成考评组,考评组以校内专家为主,至少应有一位来自相关行(企)业或工程部门的专家。考评组对研究生开题作出考评意见。
- (3) 开题报告内容。依据《开题报告表》的要求,做开题报告。在开题报告会后,及时完成《开题报告表》,在学院审核后,由研究生科保存,以备检查。
- (4) 若开题报告没能通过,在导师的指导下 3 个月后才能申请重新开题。两次开题报告不过者,应终止硕士生的学业。
 - (5) 因正当原因改变选题,须按上述要求重做开题报告。
 - (6) 论文开题通过1年后方能申请学位论文答辩。

2. 论文工作

硕士生应在校内外双导师指导下按计划按时完成学位论文工作。

论文工作的时间应不少于1年,论文工作期间应每周一次向导师汇报研究进展;研究生到校外单位做学位论文,要经校内导师、学院批准,并保证每月一次向导师汇报研究进展,按时完成相应工作。

3. 学位论文的撰写

硕士生在导师指导下,按照《研究生学位论文(研究报告)撰写格式规范》的要求,独立完成学位论文,导师应对硕士生学位论文严格审查,把好质量关。

- 4. 学位论文要求:
- (1) 学位论文类型可以是临床应用、应用基础、成果转化等多种形式。
- (2) 学位论文应能体现研究生综合运用药学理论和方法解决实际问题的能力。
- (3) 对论文所涉及的各个问题,应具有较强的基础理论和专业知识。
- (4) 学位论文应达到本专业公开学术刊物可接受并发表的水平。
- (三) 学位论文申请答辩条件

同时符合以下条件者,可向研究生管理部门提出申请进行学位论文答辩:

- 1. 药学硕士专业学位研究生完成课程学习及考试,成绩合格,获得规定学分。
- 2. 完成必修环节并考核合格,获得规定学分。
- 3. 完成学位论文。
- 4、在所属学科领域的国内外 SCI 学术期刊或北大核心期刊或科技核心期刊上发表论文。

(四)学位论文的答辩申请、评阅、答辩与学位授予按《研究生学位授予实施细则》的规定执行,其中评阅、答辩考评组以校内专家为主,但至少应有一位相关行业具有高级职称(或相当水平)的专家。

工商管理硕士(MBA) 全日制专业学位研究生培养方案

(专业代码:125100)

按照国家工商管理硕士 (MBA) 教育指导委员会有关 MBA 研究生培养过程的规定,秉承电子科技大学经济与管理学院 MBA 教育的使命——"根植中国情境,融贯全球视野,致力于技术创新与管理变革融合的知识创造,培养商界特别是 IT 及其应用领域具有创造力和社会责任的经济管理英才,促进社会普享技术文明之福祉",电子科技大学 MBA 教育中心特制订本培养方案。

一、培养目标

培养目标:为商界特别是 IT 及其应用领域培养具有全球视野、创新能力、创业精神和社会责任的管理精英。

培养理念: 职业发展导向, 致力于提升学员的价值。

培养特色: 充分体现"全球化、信息化、知识化、网络化"的时代背景,突出新的时代背景给传统的管理理论及企业管理实践带来的挑战与变革,在体系构建、课程设置、内容重点、案例选择、教学方法及教学形式等各方面突出电子科技大学电子信息领域的学科优势,体现 IT 导向特色。

针对脱产班需要强调创新与变革思维,职业与道德素养,整合与实践能力培养。

二、研究方向

- 1. 技术创新管理
- 3. 组织与战略管理
- 5. 新兴技术管理

- 2. 创业管理
- 4. 营销管理
- 6. 项目管理

三、培养方式和学习年限

全日制硕士专业学位研究生采用课程学习、实践教学和学位论文相结合的培养方式。通过课程学习、实践教学和论文研究工作,掌握某一特定职业领域相关理论知识,培养解决实际问题的能力。

全日制硕士专业学位研究生学制为二年。若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过四年。

四、学分要求与课程学习要求

每位 MBA 研究生必须完成 MBA 教育指导委员会规定的课时和学分, MBA 研究生至少要有 600 学时的专业课学时(不含政治、英语);每位 MBA 研究生应修满 45 个标准学分,其中大部分学分应通过考试取得。总学分要求不低于 54 学分,其中课程总学分不低于 45 学分,实践教学环节不低于 6 学分,必修环节不低于 3 学分;课程学分中,学位课要求不低于 32 个学分。公共基础课必修。

我校 MBA 课程学习的具体方式将分别采取如下形式: 启发式课堂讲授, 实际案例分析和研讨, 企业调研与社会实践, 专题讲座与论坛, 创新整合能力培养与实践, 文献研读与综述, 案例报告或 学位论文撰写。

根据研究生层次的培养要求和MBA教育的特点,MBA研究生的课程考核包括考试和考查两类。 其中,考查包含课堂讨论、课堂作业、考察报告、小论文、案例分析报告、项目计划书、文献综述 及其组合等。MBA研究生的课程成绩采用结构成绩制。成绩合格者才能取得相应课程的学分。 根据 MBA 课程的特点,课程教学要重点落脚到实施层面,以工具和方法为主,充分体现:现实性、实用性、操作性。教学内容设计上要强调学生的直接参与和实践。教学组织上要特别强调与学生的互动,对学生的参与提出要求并予以考核。

五、课程设置

全日制硕士专业学位课程划分为学位课、非学位课、实践教学环节、必修环节四部分。

工商管理硕士(MBA) 全日制专业学位研究生课程设置

	类别	课程编号	课程名称	学时	学分	开课 学期	考核方式	备注
		13005010	英语口语: 国际商务沟通	32	2	1	考试	
	公共	16005004	中国特色社会主义理论与实 践研究	32	2	1/2	考试	
	基础课	13005006	商务英语 I: 国际商务实务	32	2	1/2	考试	
		13005007	商务英语 II: 跨文化管理	32	2	1/2	考试	
		11455011	管理经济学	32	2	1	考试	
777	基础课	11455006	营销管理	48	3	1/2	考查/考试	
学位	至仙休	11455018	全球运营与服务管理	32	2	1/2	考查/考试	
课		11455015	组织行为学:面向高科技企业	32	2	1/2	考查/考试	
		11455012	商务智能与决策	32	2	1/2	考查/考试	
		11455004	财务管理	48	3	1/2	考查/考试	
	专业基础课	11455014	创新总论	32	2	1/2	考查/考试	
		11455016	创业管理	32	2	1/2	考查/考试	
		11455017	技术创新管理	32	2	1/2	考查/考试	
		11455010	金融学基础	32	2	1/2	考查/考试	
		11455023	战略管理	32	2	1/2	考查/考试	
		11456007	新兴技术管理	32	2	1/2	考查/考试	
		11456057	创新领导力开发与实践	32	2	1/2	考查/考试	
	-	11456068	商业伦理与社会责任	16	1	1/2	考查/考试	
	专业 选修课	11456019	创新投融资管理	32	2	2	考查/考试	
非	远修床	11456069	商业模式设计	16	1	2	考查/考试	
学位		11456051	组织设计与组织变革	32	2	2	考查/考试	
课		11456095	全球供应链管理	32	2	2	考查/考试	
,,-		11456001	宏观经济与政策环境	32	2	1/2	考查/考试	
	其他	11456023	高科技企业人力资源管理	32	2	2	考查/考试	
	选修课	11456096	技术创新项目管理	16	1	2	考查/考试	
		11456082	电子商务运营模式创新	16	1	2	考查/考试	

类别	课程编号	课程名称	学时	学分	开课 学期	考核方式	备注
实践教 学环节	00006013	创新与整合实践能力训练	64	4	2/3	考查/考试	
	00006018	管理实践研究	32	2	3/4	考查	
必修环节	00006013	入学导向(素质拓展)	20	1	1	考查	
	00006003	学术活动		1	1/2	考查	
	00006004	开题报告(含文献综述)		1	3	考查	

六、实践教学环节

1.创新整合实践(课程编号: 0006013, 4个学分)

创新整合实践环节是指面向企业管理实践,通过一系列创新整合实践活动,使学员能够掌握技术创新与管理变革的融合技能,敏锐感知和直面全球竞争环境的不确定性,把握新兴产业发展的脉搏,融合技术创新与管理变革,创造商业机会和新兴市场。创新整合实践的具体形式包括:创新实践专项训练,创新团队企业实习,企业咨询,创新整合实践报告等。这是针对 MBA 脱产学习方式安排的教学环节。

2.管理实践研究(课程编号: 0006018, 2个学分)

在具体学习过程中,通过管理实践研究方法的学习,每个学生参与从管理实践问题发现、文献的搜集和综述、研究方法的确定、问题分析和方案提供等环节的实训,完成管理实践问题诊断、问题分析和方案提供等研究报告,以获得 2 个学分。

七、必修环节

全日制专业学位研究生必修环节包含三个部分,要求研究生分别完成以下内容:

1. 入学导向(素质拓展)(课程编号: 00006012, 1 个学分),完成后获得 1 学分。

MBA 学生入学导向包含素质拓展环节,通过一系列户外和户内活动,培养 MBA 学生的团队精神和合作意识,增强彼此的认同感。共 20 学时,计 1 个学分。

- 2. 学术活动(课程编号: 00006003, 1 个学分): 为了拓宽研究生的知识面,要求硕士生在校期间必须参加十次以上校内外学术活动,有举办学术单位的公章为依据,报所在学院备案,完成者获得1 学分。
- 3. 论文开题报告及文献阅读综述(课程编号: 00006009, 1 个学分): 指研究生在学位论文开题之前,阅读本学科前沿国内外文献 20 篇以上,其中外文文献 10 篇以上,写出 4000 字左右的文献综述报告;综述报告应提出值得研究和解决的学术或技术问题,并在此基础上完成相应的开题报告,完成者获得 1 学分。

八、学位论文

(一) 硕士学位论文的基本要求

工商管理是专业学位的一种,工商管理硕士与现在培养的经济学、工学门类管理专业硕士是不同规格的人才。这样一种有别于学术研究型硕士的专业学位的论文要求,应当有自己较为鲜明的特点。MBA 的学位论文强调务实性和真实性,为保证 MBA 的培养质量,对 MBA 的论文既要严格要求又要突出专业学位特色。根据国务院学位办[1995]3 号文件规定,MBA 论文选题要具有预见性、

实用性、新颖性以及重要性。

MBA 学位论文的选题要求在调查研究的基础上紧密联系我国改革与建设的需要,结合学员所在单位或行业的实际,研究的内容应为学生所熟悉的领域和专业。

论文选题应来源于管理实践,要求从企业管理的实际需要中发现问题,提倡问题导向型研究和案例研究。具体可以在以下几个方面选取:

- (1) 金融、财务与会计;
- (2) 战略、环境与产业规划;
- (3) 营销、创新与项目管理;
- (4) 供应链与运作管理;
- (5) 电子商务、信息管理与商务智能;
- (6) 组织与人力资源管理。
- 2. 形式要求

MBA 教育旨在培养适应我国社会主义市场经济需要的实用型、复合型的高层次管理人才,MBA 的学位论文应该以应用研究为主,从我国社会与经济发展的实际出发,贯彻理论联系实际的原则。论文形式可以是专题研究、也可以是高质量的调查研究报告或企业诊断报告以及编写高质量的案例。

专题研究:针对我国经济体制改革,宏观、中观、微观管理中的某些或某种问题,运用管理学、经济学理论进行深入、系统的分析研究,并提出对策方案。专题必须具有代表性、普遍性或者独特性、典型性,能够通过对它的研究揭示若干具有指导性的思路、方法、方案、措施与政策等。

企业诊断:运用管理理论及方法,在对企业或行业调查分析基础上,找出所诊断的企业在经营管理中存在的一个或几个问题,进行定量或定性分析,找出产生问题的原因,提出具体的改善方案。要根据所学 MBA 的有关知识,运用科学、有效的方法,在充分的调查、研究、分析、计算基础上,找出企业在经营过程中各个环节或某几个环节存在的问题,并着重找出造成这些问题的内因与外因,最后提出改进建议。

调研报告:运用科学的调查研究方法对某企业或其它组织进行调查研究,提出调查研究报告,根据需要可以提供有关的决策建议,调研报告的关键是调查和研究。要根据所学 MBA 的有关知识,运用科学的方法,对某对象进行充分的调查、研究、分析,了解对象的现状、性质、特点、存在问题,在此基础上,撰写调查研究报告论文,根据需要提供有关的决策建议。

案例分析:编写对某领域具有重要影响或对教学具有典型示他性的案例,并进行案例分析。MBA 学生通过撰写案例分析报告,培养其发现、分析、解决实际问题的能力

3. 水平要求

MBA 学位论文要体现理论与实际相结合,体现运用所学专业知识发现问题、分析问题、和解决问题的能力。应反映论文作者阅读了必要的中、外文献,能够运用科学合理的定性和定量分析方法。学位论文内容要有新见解、或新的分析结果、或者有一定的经济效益和社会效益。学位论文要综合反映学生调查研究和文字表达的能力。MBA 专业学位的学位论文要求体现在以下方面:

- (1) 学位论文工作有一定的难度和深度,论文成果具有一定的先进性和实用性;
- (2) 学位论文工作应在导师指导下独立完成,论文工作量饱满;
- (3) 学位论文中的文献综述应对选题所涉及领域的国内外状况有清晰的描述与分析;
- (4) 学位论文的正文应综合应用管理科学的基础理论和方法对所解决的实际问题进行分析研究,并能在某些方面提出独立见解。
 - (5) 学位论文要求内容充实, 联系实际, 观点明确, 论据充分, 结论可靠, 写作规范。撰写要

求概念清晰,逻辑严谨,文字通畅、图表清晰、概念清楚、数据可靠、计算正确。

(二)硕士学位论文工作

硕士生应在导师指导下确定选题和开展学位论文工作。

1. 开题报告

- (1) 开题报告时间。硕士生在确定选题,大量阅读文献的基础上,应在入学的第三学期期初, 最迟应在第三学期末之前完成开题报告。
- (2) 开题报告方式。开题报告应以报告会的形式,在教(科)研室或以上范围公开举行;开题报告会须有本学科及相近学科 3 位副教授或相当专业技术职称以上的专家组成考评组,考评组对研究生开题作出考评意见。
- (3) 开题报告内容。依据《开题报告表》的要求,做开题报告。在开题报告会后,及时完成《开题报告表》,在学院审核后,由研究生科保存,以备检查。
- (4) 若开题报告没能通过,在导师的指导下 3 个月后才能申请重新开题。两次开题报告不过者,应终止硕士生的学业。
 - (5) 因正当原因改变选题,须按上述要求重做开题报告。
 - (6) 论文开题通过6个月后方能申请学位论文答辩。
 - 2. 论文工作

硕士生应在导师指导下按计划按时完成学位论文工作。

论文工作的时间应不少于6个月,论文工作期间应每周一次向导师汇报研究进展;研究生到校外单位做学位论文,要经校内导师、学院批准,并保证每月一次向导师汇报研究进展,按时完成相应工作。

4、学位论文撰写

硕士生在导师指导下,按照《研究生学位论文(研究报告)撰写格式规范》的要求,独立完成学位论文,导师应对硕士生学位论文严格审查,把好质量关。

(三)学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。